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INSurVeyor: improving insertion calling
from short read sequencing data

Ramesh Rajaby1,2, Dong-Xu Liu3,4, Chun Hang Au 1, Yuen-Ting Cheung 1,
Amy Yuet Ting Lau1, Qing-Yong Yang 3,4 & Wing-Kin Sung 1,2,3,4,5,6,7

Insertions are one of themajor types of structural variations and are defined as
the addition of 50 nucleotides or more into a DNA sequence. Several methods
exist to detect insertions from next-generation sequencing short read data,
but they generally have low sensitivity. Our contribution is two-fold. First, we
introduce INSurVeyor, a fast, sensitive and precise method that detects
insertions from next-generation sequencing paired-end data. Using publicly
available benchmark datasets (both human and non-human), we show that
INSurVeyor is not only more sensitive than any individual caller we tested, but
alsomore sensitive than all of them combined. Furthermore, for most types of
insertions, INSurVeyor is almost as sensitive as long reads callers. Second, we
provide state-of-the-art catalogues of insertions for 1047 Arabidopsis Thaliana
genomes from the 1001 Genomes Project and 3202 human genomes from the
1000 Genomes Project, both generated with INSurVeyor. We show that they
are more complete and precise than existing resources, and important inser-
tions are missed by existing methods.

Structural variations (SV) are defined as variations in a genome invol-
ving 50 base pairs or more. Although less frequent than point muta-
tions and short indels, they account for more heritable differences in
the population1. Insertions are amajor type of SV, and they are defined
as the introduction of a sequence of 50 nucleotides or more into a
locus in a DNA segment. The extra sequence is known as the inserted
sequence and the locus is known as the insertion site.

Aside from being a major source of polymorphism in the popu-
lation, insertions have been observed to be involved in several dis-
eases. Examples include diseases of the central nervous system2,
hemophilia3, cancers such as colon4, colorectal5, gastrointestinal6,
several neurodegenerative disorders7–11 and many others12.

Nowadays, insertions are usually detected using either long read
sequencing technologies (like PacBio HiFi reads and ONT nanopore
reads) or paired-end short read sequencing technologies (like Illumina

reads). Long read sequencing allows for substantially more accurate
and sensitive insertion detection. However, it is still expensive, which
limits its use in population studies. Another solution is to use paired-
end short reads. Sequencing of short reads datasets is nowadays
inexpensive and for this reason it is the technology of choice for
sequencing large populations. The number of short reads datasets
available is increasing exponentially, with studies on tens of thousands
of genomes being published13,14. With projects such as the Hong Kong
Genome Project, Singapore SG100K, the European ‘1+ Million Gen-
omes’ Initiative and the All of Us Research Project, short-read WGS
sequencing will remain at the center of genomics for the foreseeable
future.

Calling insertions from short reads is difficult. In principle, SV
callers should be able to detect them. A large number of suchmethods
exist. Cameron et al.15 published a comprehensive benchmarking of
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the existing SV callers, and found GRIDSS16 and Manta17 to have the
best performance, followedbyDelly18 andLumpy19. However, not all SV
callers explicitly report insertions, and when they do the sensitivity is
low20. When applied to recent comprehensive benchmark catalogues
of SVs, all the callers we tested consistently detected <40% of the
insertions (shown below).

Aside fromgeneral callers, several specialisedmethods that target
specific groups of insertions have been published over the years.
Insertions of mobile elements such as Alu and L1 represent a well
known cause of genetic variability in the population21,22, and tailored
methods such as MELT23, Mobster24, xTea25 and others26 have been
created. Methods such as Pamir27 and PopIns228 have been designed to
detect novel insertions, i.e., insertions whose sequence is not present
in the reference genome. TranSurVeyor29 targets insertions due to
transposition. However, these methods miss many of the insertions
they were designed for, as we later show in our experiments. Fur-
thermore, several meta-callers have been developed, such asMetaSV30

and Parliament231, which integrate the output of multiple callers in
order to increase recall. However, as shownbelow, combiningmultiple
callers results in a higher runtime and there is a sharp diminishing
return for the increase in recall as more methods are added. Another
drawback is an increased number of false positives20.

A major challenge in detecting insertions from short reads is that,
for many insertions, the inserted sequence (or part of it) is similar to
multiple regions in the reference genome. This causes reads related to
the same insertion to align to different locations. Because existing
callers fail to realise that these reads represent the same insertion, they
introduce false positives and miss many true positives. Previously, we
tackled the issue by employing a strategy based on multiple sequence
alignment to identify the source of the insertion in the reference29.
Unfortunately, this approach is limited to insertions due to transpo-
sition, i.e. when the inserted sequence is identical (or nearly identical)
to a region of the reference genome. We found that a large portion of
the inserted sequences are not fully present in the reference. Even
when they are, the most similar copy in the reference may be sub-
stantially different. In particular, we found that only 22%of the inserted
sequences in the HG002 benchmark and 44% of the inserted sequen-
ces in the HGSVC2 dataset are accurately represented in the reference
genome. For this reason, many insertions are not reported, or an
incorrect or imprecise inserted sequence is reported.

In this work, we aim to solve this problem and substantially fill the
gap between short and long reads. For this purpose, we introduce
INSurVeyor, a method that detects insertions from paired-end WGS
data. INSurVeyor addresses the aforementioned issues by using three
distinct algorithms: (i) when a region in the reference is sufficiently
similar to the inserted sequence, INSurVeyor identifies the region and
uses a reference-guided assembly algorithm to produce the exact
inserted sequence; (ii) when the inserted sequence is not present in the
reference, INSurVeyor employs an ad-hoc de-novo assembly algo-
rithm, which uses information about the strands of the reads to
remove wrong assemblies; and (iii) a specialised module detects
smaller insertions. This allows INSurVeyor to predict any type of
insertion and to report accurate inserted sequences. In the remainder
of this article, we first showanoverviewof themethod implemented in
INSurVeyor. Then, we use several publicly available benchmark human
genomes to show that INSurVeyor is not only more sensitive than any
individual caller we tested, but also more sensitive than all of them
combined. Our method predicts >1400 true positive insertions per
sample that are missed by popular state-of-the-art methods, while
maintaining excellent precision. Furthermore, it is more sensitive in
predicting mobile elements insertions (MEI) than specialised,
database-based MEI callers. With the exception of insertions of low
complexity sequences, INSurVeyor achieves performance close to the
state of the art in SV detection with long reads. We then demonstrate
that INSurVeyor performs well on non-human genomes. Liu et al.32

recently published an ensemble SV caller, IndelEnsembler, and used it
to study the SVs of a population of 1047 Arabidopsis Thaliana. We
tested INSurVeyor on thebenchmarkplant genomesused in ref. 32 and
show that it consistently outperforms IndelEnsembler. While Inde-
lEnsembler detected on average 55% of the insertions in seven A.
Thaliana benchmark datasets, INSurVeyor detected 85%of them,while
maintaining similar or superior precision. We observed similar
improvements when we tested the software on two more species of
plants. We then proceeded to call insertions on the same 1047 A.
Thaliana used by Liu et al., and found multiple previously missed
insertions that significantly influence phenotypes such as flowering
time, days until first open flower and rosette leaf number. Finally, we
present a catalogue of insertions for the full 1000 Genomes Project
dataset. Insertions were called by INSurVeyor on 3202 high-coverage
human genomes in <3 days using modest resources. When compared
to the current state of the art, our catalogue contains nearly three
times asmany insertions.We show that not onlywepredicted nearly all
the previously detected insertions, but also 94,988 novel ones, with
high validation rates. Furthermore, we show that INSurVeyor identified
polymorphism in 567 potentially clinically relevant loci, mostly novel.

INSurVeyor is available at https://github.com/kensung-lab/
INSurVeyor and is fully open source. It is easy to run and only
requires an indexed BAM or CRAM file and a reference genome,
without theneed for additional data or annotations, andoutputs a fully
standard VCF file.

The dataset generated for this study are also available, and links
are provided in Data availability.

Results
Overview of INSurVeyor
For many insertions, the inserted sequence is similar to multiple
regions in the reference genome (mobile element insertion is a typical
example), and reads related to those insertions can align to multiple
locations. For this reason, most existing structural variation callers
either fail to predict these insertions, or they call a large number of
false positives29.

TranSurVeyor29, a tool specialised in the detection of insertions
due to transposition, tackles the problemby identifying read pairs that
support the presence of an insertion, and labels one read as stable and
the other as unstable. The stable read is presumed to align to the
genomic region surrounding the insertion site, while the unstable read
is presumed to be sequenced from the inserted sequence. Stable reads
are clustered to identify insertion locations and, for each cluster, the
unstable reads are aligned to the reference using a multiple sequence
alignment heuristic algorithm, to determine the source of the trans-
posed sequence.

However, this technique has limitations, as it can only detect an
insertion if its inserted sequence is highly homologous to a segment of
the reference genome. Using high-quality structural variations catalo-
gues we confirmed that this is not the case for most insertions. In
particular, we observed that only 22% of the inserted sequences in the
Genome in a Bottle (GIAB) HG002 SV benchmark33 and 44% of the
inserted sequences in the HGSVC2 catalogue34 are accurately repre-
sented in the reference genome (Supplementary Fig. 1). This causes
many insertions to be missed or reported with an inaccurate inserted
sequence.

Ourmethod addresses these shortcomings in twoways.When the
inserted sequence is similar to a region in the reference, INSurVeyor
uses reference-guided assembly to determine the inserted sequence,
instead of simply reporting the reference region. Therefore, the pre-
cise inserted sequence is provided. When no sufficiently similar or
complete reference region is found, INSurVeyor performs de novo
assembly of the stable and unstable reads associated with the inser-
tion; the assembly algorithm takes into account information about the
mapping location and the orientation of the stable reads to improve
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the precision of the assembled sequences. Finally, short insertionsmay
be missed because they are supported by few or no read pairs; a
specialised consensus-overlap algorithm has been introduced to pre-
dict them. The result is INSurVeyor, a fast, sensitive and precise tool
that is able to detect any type of insertion. In the remainder of this
section, we provide a high-level overview of the algorithm.

INSurVeyor identifies insertions using three major steps. The first
step extracts the subset of read pairs that is relevant for predicting
insertions (Fig. 1a).

The second step aims at building, for each insertion, the sequence
of the alternative allele, which consists of the inserted sequence and
two flanking regions from the reference. This step is the core of
INSurVeyor, and it is composed of three different modules that target
insertions based on their characteristics: the remapping module
(Fig. 1b) targets insertions due to transposition, i.e., when a sequence
similar to the inserted sequencecanbe found in the referencegenome;
the local assembly module (Fig. 1c) targets novel insertions, i.e. inser-
tions whose inserted sequences are not present in the reference gen-
ome. Finally, the consensus-overlap module (Fig. 1d) aims at predicting
smaller insertions that may have been missed by the other two mod-
ules due to lack of supporting read pairs. Once the alternative allele is
assembled, it is remapped to the putative insertion site in order to
determine the precise breakpoints and the inserted sequence (Fig. 1e).
Finally, the candidate insertions thatpass a series offilters are reported
(Fig. 1f). A detailed, technical explanation of eachmodule can be found
in Supplementary Information.

HG002 benchmark
TheGenome in a BottleConsortiumdeveloped a benchmark catalogue
of 7281 sequence-resolved insertions and 5,464 deletions for HG00233,
a genome in the Personal Genome Project. The benchmark, based on
the human genome version 19 (hg19), was obtained by integrating
different methods and technologies. Using the method described in
Methods, 3273 out of the 7281 reported insertions were classified as

tandem duplications. These are outside of the scope of the methods
tested here, sowe excluded them. In the rest of themanuscript, wewill
refer to this catalogue as GIAB-SV.

The authors in ref. 33 defined a set of Tier 1 regions in hg19 where
the callset is guaranteed to be reasonably complete, and any extra
insertion predicted by the tested tools is very likely to be a false
positive. Only predicted calls in Tier 1 regions are used for estimating
precision. We obtained a BAM file of ~50× coverage by downloading
runs from SRR1766442 to SRR1766486, and mapping them to hg19
using BWA-MEM35.

We tested several tools, and chose the best representatives, to our
knowledge, from three categories: general SV callers (Manta and
Delly), theoretically able to predict any type of insertion; mobile ele-
ment insertion (MEI) callers (MELT and xTea); and a novel insertion
caller (Pamir). Details of the additional software tested and the criteria
for selecting the callers are reported inMethods. Some tested tools do
not report the actual inserted sequences, so benchmark and predicted
calls are matched based on insertion site positions. For tools that
report the inserted sequences (Delly, Manta, Pamir, INSurVeyor), the
comparison is extended to assess the accuracy of the predicted
inserted sequences. Technical details are reported in Methods.

INSurVeyor had much higher sensitivity than general SV callers,
Delly (24×) and Manta (2×), as shown in Fig. 2a. Although sensitivity is
also much higher than MELT (3×), Pamir (6.5×) and xTea (5×), they are
not directly comparable as these are specialised tools that only aim at
detecting a subset of the insertions. Precision was extremely high
(0.98, second only to Delly), but all tools had good precision with the
exception of Pamir. Even when pooling the calls from all the tools,
INSurVeyor is still considerablymore sensitive (2878 true positives for
INSurVeyor and 2434 true positives for all the other tools combined,
Fig. 2b). Furthermore, running all tools consecutively took >1200min,
while INSurVeyor only took 75min. Clearly, adding more tools may
increase the sensitivity, but at the expense of running time and pos-
sibly a higher number of false positives. The combination of existing

Fig. 1 | Overview of the INSurVeyor method. The method can be essentially
divided into three blocks: (a) INSurVeyor extracts discordant pairs and clipped
reads as possible evidenceof insertions; (b–d) the evidence extracted by (a) is used
to generate the alternative allele sequence, which consists of the predicted inserted
sequence along with the two flanking regions shared with the reference genome.
This is achieved by three separate modules: the remapping module (b) aims at

predicting transpositions; the local assembly module (c) aims at predicting novel
insertions, while the consensus overlapmodule (d) predicts small insertions. e This
sequence is then remapped to the reference genome to identify the precise
boundaries of the predicted insertion, which is finally passed through a series of
filters (f) that aim at reducing the number of false positive calls.
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tools that seems to offer the best balance between running time and
sensitivity is MELT andManta. One or both of these tools are regularly
used in large scale studies such as the 1000 genomes project21,36, and
GnomAD13. Even so, Manta and MELT collectively took 5 times longer
than INSurVeyor to run (405min) while producing less true positive
calls (2126 for Manta and MELT, 2878 for INSurVeyor). Adding more
tools provides little benefit in terms of discovered insertions, while it
considerably increases the running time.Most importantly, nearly 800
insertions are discovered only by INSurVeyor and missed by all the
other tools (Fig. 2c). Even when using the strict comparison criterion,
which requires not only the insertion site but also the inserted
sequence to agree with the benchmark (Fig. 2d), INSurVeyor is still
more than twice as sensitive as Manta. The loss of sensitivity is almost
entirely due to very long inserted sequences that INSurVeyor could
only partially assemble; 97% of the completely assembled sequences
agreed with the benchmark.

We further investigated how (a) the tools perform on different
types of insertions, and (b) how our solution applied to short reads
compare to the state of the art in long reads insertion calling. We
downloaded a 50x PacBio HiFi dataset for HG002 (PRJNA586863) and
ran Sniffles237, SVIM38 and cuteSV39, three popular SV callers for long
reads. Sniffles2 had a slightly higher recall than the other two, so we
chose it for our comparison. We partitioned the insertions into three
major categories, according to their inserted sequences: mobile

elements (SINE and LINE, 1282, 32%), low complexity sequences (1111,
27.7%) and others (1615, 40.3%). Details on the classifications are
reported in Methods.

INSurVeyor is more sensitive than the other tools that use short
reads for every type of inserted sequence (Fig. 3). Note thatMEI callers
rely on databases of known mobile elements, while INSurVeyor does
not use any prior knowledge, and is completely agnostic to the species
analysed. Despite this, INSurVeyor has clearly superior sensitivity in
detecting MEI (0.85 INSurVeyor, 0.61 MELT, Fig. 3a). Interestingly, MEI
callers appear to perform especially poorly when a SINE element
inserts into a reference SINE, or when a LINE element inserts into a
reference LINE (Supplementary Fig. 2). Sniffles2 performs extremely
well (0.99 sensitivity), as expected given the high quality of the long
reads dataset provided. Despite this, INSurVeyor can detect >85% of
MEI predicted using high fidelity long reads.

Insertions of low-complexity sequences are extremely challenging
to detect using short reads, and they are the only type of insertion
where using long reads provides a large advantage. This likely due to
the highly repetitive nature of the sequences and other technical rea-
sons, such as an usually large number of sequencing artefacts and
possibly very low or very high GC content. Among the short reads
callers, INSurVeyor shows a 32% increase in sensitivity over Manta,
while the other tools are essentially unable to call such inser-
tions (Fig. 3b).

Fig. 2 | Performance of the tested tools on the HG002 benchmark. a Sensitivity,
precision and F1-score of individual callers. INSurVeyor has a much higher sensi-
tivity (0.72) than the other tools, and extremely high precision (0.98). This pre-
dictably results in the highest F1-score (0.83). b The number of predicted TPs and
the running time in minutes for INSurVeyor and for different combinations of
existing tools (sortedbynumber of TPs, top 20 showed). INSurVeyor alone predicts

more true positives than all the other tools combined, while using a fraction of the
running time. c The number of calls that are uniquely contributed by each caller.
Notably, INSurVeyor contributesmore than700 truepositives that aremissedbyall
of the other tools. No other tested caller performs similarly. d Sensitivity when
using the strict criterion. INSurVeyor is still more sensitive than other tools.
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Finally, INSurVeyor showed the largest advantage on the inser-
tions that were classified neither as MEI nor as low complexity inser-
tions. Only Manta and INSurVeyor were able to call these insertions,
but the latter was nearly twice as sensitive. Not only INSurVeyor was
able to detect 82% of the insertions detected by Sniffles2, but it also
detected a relatively large number of insertions missed by the long
reads caller (Fig. 3c).

HGSVC2 benchmark
The Human Genome Structural Variation Consortium (HGSVC) has
published a catalogue (called HGSVC2) of insertions and deletions
identified from long-read PacBiowhole-genome sequencing and Strand-
seq data for 34 human genomes from the 1000 genomes projects34 (the
catalogue also includes calls for a 35th genome, HG002, which we
already covered). Furthermore, the New York Genome Center (NYGC)
has recently performed whole-genome sequencing (WGS) of the 2504
original samples in the 1000 Genomes Project, along with 698 addi-
tional samples, on modern sequencing platforms and at high coverage
(30×)36. We ran the callers on the CRAM files provided by the NYGC.
Unfortunately, we failed to run xTea, and Pamir did not complete any
sample within 1week. Delly did not perform any better than it did on
HG002, and we found little merit in including it in any subsequent
analysis. Since Manta-MELT was also the most cost-effective combina-
tion on HG002, we decided to benchmark it against INSurVeyor.

When applied to the HGSVC2 samples, the results were similar to
what was shown in the previous section. INSurVeyor is more sensitive
thanboth tools combined and equally precise (Fig. 4a), which results in
a higher F1-score (Fig. 4b). Remarkably, INSurVeyor predicts, on
average, 1441 true positive insertions per sample that are missed by
both Manta and MELT (compared to missing 251 on average, Fig. 4c).

Arabidopsis thaliana
Next, we test INSurVeyor onanon-humangenome. Recently, Liu et al.32

developed an SV detection pipeline, IndelEnsembler, and used it to

produce a state-of-the-art catalogue for 1047 Arabidopsis thaliana
genomes. In order to detect insertions, IndelEnsembler combines calls
fromTranSurVeyor andManta. Liu et al. generated abenchmark callset
using Assemblytics40 on seven publicly available assembled Arabi-
dopsis Thaliana genomes. The performance assessment method
employed in ref. 32 was applied to INSurVeyor.

Figure 5 a reports sensitivity and precision for all seven samples.
INSurVeyor greatly improves sensitivity over IndelEnsembler. Average
sensitivity for IndelEnsembler was 0.55, compared to 0.85 for INSur-
Veyor. Furthermore, the increase in sensitivity does not come at the
expense of precision. Liu et al. also tested IndelEnsembler on different
plants species at varying sequencing depths. We compared Inde-
lEnsembler to INSurVeyor on the same datasets for the species B.
Napus and Soybean (Fig. 5b). For both species, INSurVeyor is sig-
nificantly more sensitive than IndelEnsembler. One issue noted by Liu
et al. was that sensitivity for insertions was subpar when compared to
deletions, and INSurVeyor fills this gap.

We called insertions using INSurVeyor on the 1047 A. Thaliana
genomes studied by Liu et al., and we clustered them with the algo-
rithm presented in ref. 32. The final callset consisted of 76,348 non-
redundant insertions appearing in at least one Arabidopsis thaliana
sample. The sizes of the insertions ranged from 50bp to 15,343 bp
(median 384 bp). Transposable elements are major components of
plant genome and play an important role in creating structure varia-
tions. We identified 21,833 insertions (28.6%) as TE insertions, corre-
sponding to three class I (LINE, Copia, and Gypsy retrotransposons)
and eight class II (Helitron, En-Spm, Harbinger, hAT, Mariner, MuDR,
Pogo, and Tc1 DNA transposons) superfamilies.

Most peaks in the distribution of insertion sizes (Fig. 6a) are
contributed by TE insertions, with major peaks associated with events
related to the Copia, Gypsy, Helitron, and hAT families of transposable
elements (Supplementary Fig. 3a). Peaks at 123, 166, 292, and 444 bp
mainly consisted of insertions of Copia retrotransposons. Peaks at
553 bp consisted of Copia and Helitron transposable elements. Lastly,

Fig. 3 | Performance of the tested tools on different types of inserted sequen-
ces, and comparison with Sniffles2. The benchmark insertions are partitioned
into three types depending whether the inserted sequence is (a) a mobile element
(SINE, LINE or SVA), b low complexity or (c) other, i.e., none of the previous

categories. The sensitivity of different tools was assessed for each type. INSurVeyor
performs better than other short reads-based methods in every single class. Fur-
thermore, with the exception of low complexity sequences, INSurVeyor predicts
most of the insertions detected by methods that use long reads datasets.
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we found that 94% of the 759 bp insertion peak is consisted of hAT
DNA transposons. Note that most of the peaks were either absent or
barely noticeable in the original callset. The Helitron DNA transposons
superfamily had the largest TE insertion event contribution (7216
insertions), followed by the Copia (6336 insertions) and MuDR (2872
insertions) retrotransposons families (Supplementary Fig. 3b). In total,
we obtained 16,927 TE insertions occurring within 1.5 kb upstream
(promoter) and downstream of the gene body. Specifically, we found
3879 genes overlapping with at least one TE insertion. We found that
28.86% of Copia, 27.31% of Gypsy retrotransposons insertions and
24.06% En-Spm DNA transposons insertions inserted into coding
regions. These ratios were significantly higher than the others TE
insertions (the corresponding ratios of LINE, MuDR, hAT, and Helitron
were 9.26%, 4.21%, 4.55%, 1.87%, respectively, Fig. 6b). These findings
indicate TE insertions extensively influence genes in Arabidopsis
thaliana.

To explore the contribution of insertions to flowering time varia-
tion, we used our insertions to perform a genome-wide association
study forflowering timeof Spain 2008andplanting summer 200841.We
found a 982 bp insertion on Chr3, inserting into the fifth exon of
AT3G27570, significantly influencing flowering time of both Spain 2008
andplanting summer 2008 (Fig. 6c, d).AT3G27570 encodes the sucrase,
sucrase catalyzes the hydrolysis of sucrose to glucose and fructose.
There has been a certain amount of evidence suggesting that sucrose
promotes flowering42,43. King44 reported that sucrose may regulate
flowering by up-regulation of Flowering Locus T (FT, AT1G65480)
expression. The 12 accessions with this insertion flowered later than
thosewithout it (Fig. 6c, d). This indicated that the982 bp insertion is an
important genetic variants for studying Arabidopsis thaliana flowering
time. We also detected a 4428bp insertion located on Chr5, inserting
into the second exon of AT5G21110 (Supplementary Fig. 3g), that

significantly associated with days until first open flower (DTF3) (Sup-
plementary Fig. 3c), flowering time (under 10 °C and 16 °C) (Supple-
mentary Fig. 3d, e) and rosette leaf number (RL) (Supplementary
Fig. 3f)45. The accessions with this insertion flowered later, the days of
first open flower delayed and the rosette leaf number increased com-
pared to those without it. We also found a 445 bp insertion that sig-
nificant associated with flowering time under 10 °C and was located on
the second exon of AT1G26570 (Supplementary Fig. 3h). AT1G26570 is a
UDP-glucose dehydrogenase (UGDH), which catalyzes the conversion
of UDP-glucose to UDP-glucuronic acid46. The 11 accessions with this
insertion flowered later than those without it (Supplementary Fig. 3i).
Those examples showed that the insertions provided an important
resource to find the causal phenotypic variation inArabidopsis thaliana.

An insertion catalogue for 3202 genomes in the 1000 genomes
project
INSurVeyor was used to generate a catalogue of insertions for the 3202
genomes sequenced by the New York Genome Center (NYGC)36. Note
that, due to its speed, INSurVeyorwas able to call insertions on 3202 30x
human genomes in <3days using a modest amount of resources (a
cluster of 64 AWS r5.2xlarge 8-cores machines). Using a combination of
the existing tools would have produced a less complete catalogue and
would have required considerably higher computational resources.

After calling insertions for each individual genome, results con-
taining long homopolymer runs of Cs or Gs were discarded. This is
because the datasets were sequenced using NovaSeq 6000, and poly-Gs
runs are most likely sequencing artefacts47. We found insertions into
centromeres to have lower precision than insertions into other regions,
so they were also removed. The remaining insertions were left-aligned
and clustered across the samples so that within each cluster no two
insertions would be >200bp away, using the clustering algorithm

Fig. 4 | Performanceof the tested toolson theHGSVC2benchmark. a Sensitivity,
precision and b F1-score of Manta, MELT, the union of the two and INSurVeyor
(10 samples randomly picked are displayed here, a summary for the 34 samples is

presented in Supplementary Fig. 8). Results are consistent with what was observed
on HG002. c Venn diagram of the true positive calls per sample that are called by
different combinations of the tools, averaged over the 34 genomes.
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presented in ref. 32. Each cluster is a unique insertion in the population,
and it is represented by the most common insertion in the cluster.

The final catalogue was composed of 148,934 insertions. Rare
insertions (identified in <1% of the population) accounted for 83.9% of
the catalogue, and39.6%were singleton (i.e., private toone individual).
Africans had more insertions per individual (median count 5119) than
non-Africans (median count 4406) when compared to hg38. The
number of insertions was similar between the remaining super-
populations (Fig. 7a). The size distribution shows three peaks for
mobile elements (ALU, SVA and LINE, Fig. 7b, also identified in ref. 13),
and PCA analysis clearly segregates the superpopulations (Fig. 7c) and
even subpopulations (Supplementary Fig. 10).

Along with the sequenced data, NYGC also produced a compre-
hensive catalogue of the SVs in 1000g using state-of-the-art tools for
SV calling in a population36. We refer to it as 1000g-SV. Over 91% of the
insertions in 1000g-SV were present in our catalogue. Only 4353
insertions were private to 1000g-SV, compared to 94,988 insertions
private to INSurVeyor. When restricting to samples in HGSVC2, the
validation rate of the 1000g-SV private SVs was 50%, compared to 80%
for INSurVeyor. As expected, the validation rate for shared events was
extremely high (99%). When considering the performance sample by
sample, INSurVeyor was both more precise and more sensitive than
1000g-SV (Fig. 7e).

STRexpansions inALUarepotentially pathogenic andmissedby
existing methods
We further investigated the enrichment of novel calls by INSurVeyor in
different regions of the genome compared to existing 1000g-SV calls
(Fig. 8a), stratified by repeat content of the insertion site. For every
repeat type, the number of INSurVeyor-private events is higher than
the number of calls shared with 1000g-SV. SINE (6006 shared events,

17,133 private, 3.9-fold enrichment) and low complexity regions
(4636 shared, 23,065 private, 6-fold enrichment) show the most
enrichment in absolute terms. Low complexity regions are extremely
difficult to resolve using short reads, as confirmed by Supplementary
Fig. 2, so we focus our attention on insertions in SINE regions.

We partitioned insertions in SINE regions based on the repeat
content of their inserted sequences. Unsurprisingly48, SINE insertion
was the major type. Interestingly, insertions of low-complexity
sequences were the second most common. We identified 747 inser-
tions of low-complexity sequences into reference SINEs in HGSVC2.
Our callset contained 73% of them, while 1000g-SV contained 20% of
them.Only 3HGSVC2-supported callswere uniquely present in 1000g-
SV, compared to 401 uniquely detected by INSurVeyor (Fig. 8c).
Overall, the INSurVeyor callset contained 1655 low complexity
sequences inserted into SINE regions. Upon closer inspection, the vast
majority (potentially all) could be classified as short tandem repeat
(STR) expansions, 74% of them located in the 3' tail of an Alu (Fig. 8d).
Pathogenic STR expansions of Alus in intronic regions are known to
cause neurodegenerative disorders such as CANVAS7, different types
of Spinocerebellar Ataxias8–10 and Friedreich’s Ataxia11. Our catalogue
contained 562 intronic Alu STR expansions, and an additional 8 and 17
were in 3' UTRs and promoters, respectively. None were detected in 5'
UTRs and coding regions (Fig. 8e). Among them, we could identify
varying degree of polymorphism in RFC1, associated with CANVAS;
DAB1, where we identified a known expansion of the motif AAAAT but
not the pathogenic ATTTC, which is associated with SCA37; ATXN10,
where we detected an expansion of the motif ATTCT in 12 individuals,
all from Central and South America (where SCA10 is predominantly
found), all in the intermediate range (30-799 copies); FXN, where we
found short expansions of the GAA motif in 59 individuals (long
expansions, usually > 2kb, are known to cause Friedreich’s Ataxia). See

Fig. 5 | Performance of IndelEnsembler and INSurVeyor on different plant
samples. a Performance of IndelEnsembler and INSurVeyor on predicting inser-
tions on seven Arabidopsis Thaliana genomes. INSurVeyor is more sensitive. Fur-
thermore, it is more precise in all samples except one. b We compared the

sensitivity of IndelEnsembler to INSurVeyor on two more species of plants, B.
Napus and Soybean, for different sequencing depths. In both species, INSurVeyor
shows major improvements.
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Supplementary Table 1 for a list of loci of known pathogenic expan-
sions in intronic Alus, along with the pathologies caused and the
number of individuals in the 1000 Genomes Project with detected
polymorphism. Only 107/562 (19%) of the intronic expansions were
present in 1000g-SV. We ran ExpansionHunter Denovo49, a specialised
method for detecting STR expansions, and only 121/562 (22%) of them
were detected. Our validation rate with HGSVC2 was 92%, which sug-
gests that the expansions identified are reliable.

Discussion
We presented a computational method, INSurVeyor, to identify
insertions from paired-end WGS datasets. We tested several state-of-
the-art callers, both specialised and general, on publicly available
benchmark humangenomes. INSurVeyorwasmore sensitive thanall of
themcombined, andpredicted a largenumber of truepositivesmissed

by all other methods. It performed well across all types of insertions,
and with the exception of insertions of low-complexity sequences, it
predicted >85% of the insertions predicted by long reads. Given the
exponential increase indatasets sequenced, speed andprecision are of
primary importance. INSurVeyor was both extremely precise and fast.

INSurVeyor is completely agnostic to the species analysed.
Recently, Liu et al.32 published IndelEnsembler, an ensemble SV caller,
and used it to study a population of 1047 Arabidopsis Thaliana gen-
omes. We called the insertions on benchmark datasets of different
species of plants and showed that INSurVeyor has consistently higher
sensitivity when compared to IndelEnsembler. We then generated a
catalogue of insertions for the 1047 A. Thaliana used by Liu et al., and
found multiple insertions that were previously missed that strongly
correlate with phenotypes such as flowering time, days until open
flower and rosette leaf number.

Fig. 6 | Propertiesof the catalogueof insertions called in 1047 samples fromthe
1001 Genomes Project. a Size distribution of the insertions discovered in
1047 samples of Arabidopsis Thaliana. The most prominent peaks are caused by
insertions of transposable elements.bThe counts of different TE insertions in genic
regions. Genic regions include 1.5 kb upstream of the gene body. c, d A significant
loci for flowering time of Spain 2008 (c) and summer 2008 (d). Left, Manhattan
plots of insertions genome-wide association studies for flowering time of Spain
2008 (c) and plant summer 2008 (d). Blue and red horizontal lines indicate the
significance thresholds of GWAS (5.25 ⋅ 10−5 and 2.63 ⋅ 10−6, respectively). The

vertical line represents the candidate gene AT3G27570 on chromosome 3. Center,
QQ plots for flowering time of Spain 2008 (c) and plant summer 2008 (d). Right,
Violin plots showing the flowering time of accessions with different AT3G27570
alleles for Spain 2008 (c) and plant summer 2008 (d) (P-values were determined
using two-tailed Student’s t-tests). Flowering time is significantly delayed in sam-
pleswith the alternative allele compared to thosewith the referenceallele. Boxplots
in (c) and (d) showmedian (inner line) and inner quartiles (box).Whiskers extend to
the highest and lowest values no greater than 1.5 times the inner quartile range.
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Finally, wedemonstrated the advantages ofhaving a fast, sensitive
and precise caller by generating a catalogue of insertions for the 1000
Genomes Project samples resequenced by the New York Genome
Center. Due to its speed, we were able to call the insertions for all

3202 samples in <3 days usingmodest resources. NYGC has generated
a catalogue of SVs for the same samples by jointly using GATK-SV and
svtools, the pipelines behind major studies, as well as in-house tools.
Our final catalogue contained nearly three times as many insertions,

Fig. 7 | Propertiesof the catalogueof insertions called in3202 samples fromthe
1000 Genomes Project. a Number of insertions called per superpopulation. Afri-
cans consistently have a higher number of insertions than other superpopulations
when compared to hg38. The boxes contain values from the lower to the upper
quartile, the line within the box is the median and the whiskers extend by 1.5 times
the interquartile range. Circles represent data points outside of the whiskers.
b Length distribution of the inserted sequences. The ALU, SVA and LINE peaks are
all clearly present. c Principal component analysis (PCA) of the distribution of the
insertions in the population clearly separates the superpopulations. d Number of
private and shared calls between the 1000g-SV and the INSurVeyor callsets.

Between parentheses, the validation rates of calls in samples with long reads. Note
that we match insertions as long as they are within 500 bp from each other,
therefore a single insertion from 1000g-SV can match multiple insertions from
INSurVeyor, and vice versa. For this reason, the numberof 1000g-SV insertionswith
a match in INSurVeyor (45,340) is not the same as the number of INSurVeyor
insertions with a match in 1000g-SV (53,946). Not only INSurVeyor has a large
number of private events (94,988 compared to 4353 private to 1000g-SV), but also
a much higher validation rate. eWhen evaluated sample by sample using HGSVC2,
INSurVeyor is consistentlymore sensitive and precise (10 randomly picked samples
shown here, a summary for the 34 samples is shown in Supplementary Fig. 9).

Article https://doi.org/10.1038/s41467-023-38870-2

Nature Communications |         (2023) 14:3243 9



and 94,337 insertions were unique to it, while only 4387 insertions
were unique to the NYGC catalogue. Using samples with benchmarks,
the validation rate of INSurVeyor-specific calls was far superior (80%)
to that of NYGC-specific calls (50%).

Our catalogue was enriched over the published one across all
types of repeats, andwe expect that INSurVeyorwill provide biologists
and bioinformaticians with a powerful tool to uncover a degree of
variation that was previously missed. For example, a handful of short
tandem repeat expansions in reference Alu elements in intronic
regions are known to cause neurodegenerative pathologies. INSur-
Veyor detected polymorphism consistent with the literature in all of
them. Furthermore, it reported 562 expansions in intronic Alu ele-
ments across the human genome, most of them missed even by spe-
cialised tools, and with high validation rates. We hypothesise that
previously missed clinically relevant loci may be among them.

One type of insertionwhere long reads still have a clear advantage
is when the inserted sequence is a low complexity sequence. This is
due to the repetitive nature of those sequences, as well as other
technical reasons, which make mapping the reads sequenced from
them a challenging task. Although we believe short reads may have
intrinsic limitations in detecting such events, we also believe that there
may still be room for improvement and efforts should be put into

reducing the gap with long reads, especially with the many exciting
large-scale sequencing efforts currently underway.

Methods
Excluding tandem duplications
In both SV catalogues that we use as benchmark (GIAB-SV and
HGSVC2), part of the insertions are due to tandem duplications.
However, short-read based SV callers such as Manta and Delly report
tandem duplications as a separate class of SVs from insertions. Fur-
thermore, tandemduplications are outsideof the scopeof INSurVeyor,
MELT, xTea and Pamir.

Let R[1. . n] be a region of the reference, and R[0] and R[n + 1] be
the base pair immediately before and immediately after it, respec-
tively. Let I be an insertion that inserts a sequence S between R[i] and
R[i + 1], i∈ [0. . n]. I is a tandem duplication if S =R[i + 1. . n]R[1. . i]
(R[1. . 0] and R[n + 1. . n] are defined as empty strings). This is because
the resulting sequence is R[1. . i]SR[i + 1. . n] = R[1. . i]R[i + 1. . n]R[1. . i]
R[i + 1. . n] =RR. Therefore, we employ the following procedure to
decide whether a benchmark insertion I is a tandem duplication and
should be excluded.

• Let S be the inserted sequence of I. A base sequence B of S is a
sequence such that S can be obtained by concatenating Bα times

Fig. 8 | Analysis of enriched regions and insertion types in the INSurVeyor
dataset. a Compared to the 1000g-SV dataset, INSurVeyor shows the most
enrichment in SINE and low complexity regions (as annotated by RepeatMasker).
bWe classify insertions in SINE regions by repeat content of the inserted sequence.
Most insertions into reference SINEs are byother SINE sequences. The secondmost
frequent category is the insertion of low-complexity sequences, and they are
mostly specific to INSurVeyor. cWe identify 747HGSVC2 calls as insertions of a low
complexity sequence into a SINE. Our catalogue contains 73% of them, while only
20% are present in the 1000g-SV dataset. Only 3 are uniquely present in 1000g-SV
and missed by INSurVeyor. d We observed that most (potentially all) insertions of

low complexity sequences into SINE regions are due to STR expansions. One
notable example is the expansion of the 3' tail of an AluSx1 element in an intron of
theATXN10 gene. Very large expansions (≥800 copies) of the ATTCTmotif result in
SCA10. e 34% of the SINE STR expansions are in intronic regions, andmost of them
are not reportedby 1000g-SVnor ExpansionHunter Denovo, a specialised tool. The
validation rate when compared to HGSVC2 is 92%, which suggest most detected
expansions are true positives. Some intronic ALU STR expansions are known to
cause neurodegenerative diseases. fMost expansions (74%) happen in the 3' tail of
an ALU element. We consider the 3'-most 30bp of an ALU to be its 3' tail.
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(where α ≥ 1). We use TRF50 to find the shortest base sequence of
S that is at least 50bp. We call it B0.

• Let l be the length of B0, and p be the genomic coordinate of the
insertion site on the reference. For every n∈ {0. . l}, we divide B0

into Pn and Sl−n, where Pn is the first n characters of B0 and Sl−n is
the last l − n characters of B0. We perform a Smith-Waterman
alignment (match= 1, mismatch = -4, gap opening = -6) between
the genomic region [p − (l − n),p] and Sl−n, and between the
genomic region [p, p + n] and Pn. If at least 80% of Pn and Sl−n are
covered by the alignment, the insertion is marked as a
duplication. Supplementary Fig. 8 illustrates this with an
example and explains the rationale behind the algorithm.

Tested software
For comparison, we aimed at selecting the best two representative
from three distinct categories: general SV callers, mobile element
insertion (MEI) callers and novel insertion callers. For objectiveness of
the evaluation, we require the tool to explicitly call the insertions,
without a need for the user to interpret or transform the results. All
software were run with default parameters, and insertions of at least
50 bp were retained.

For SV callers, we relied on a recent in-depth evaluation of the 10
most popular SV callers15, which shows that Manta and GRIDSS gen-
erally perform the best, followed by Delly and Lumpy. Out of the four,
only Manta and Delly explicitly report insertions, so we selected them.

A review of specialised MEI callers26 found that MELT, Mobster
and Retroseq had the best performance out of the tested tools. We
have previously found29 that among the three, MELT performed the
best. MELT is widely adopted and it is used by several projects such as
the 1000 Genomes Project and gnomAD-SV. We also included a very
recent tool, xTea, which was shown to perform better than MELT on
the datasets tested by the authors.

Finally, we tested PopIns2 and Pamir, two recent novel insertion
callers. However, PopIns2 provided a very low number of insertions on
the datasets we tested, so we left it out of the comparison.

All software was run on a server equipped with two Intel Xeon
6252 and 1.5 TB of RAM, running Linux Ubuntu 20.04. Multithreading
was limited to 8 cores.

Comparing insertions
An insertion is defined by an insertion site and an inserted sequence.
Because xTea andMELT do not report the actual inserted sequence, in
order to have a fair comparison between the tools, we use a relaxed
comparison. Given two insertions i1 and i2, we say that i1 and i2match if
their insertion sites are within 500 bp of each other.

Only when explicitly mentioned and when all the tools report the
inserted sequences, we use a strict criterion. When the inserted
sequence is very long (typically much longer than insert size), Manta
and INSurVeyor may only report a prefix and a suffix of the inserted
sequence. When using the strict criterion, we discard such insertions.
Given two insertions i1 and i2, let S1 and S2 be their inserted sequences,
and l1 and l2 be the lengths of S1 and S2, respectively. i1 and i2 match if
their insertions sites are within 500bp, (b) ∣l1 � l2∣≤ 500 and (c) if the
Smith-Waterman alignment score between S1 and S2 is greater or equal
than min(l1, l2) (match = 2, mismatch= -2, gap opening = -4).

Determining the repeat content in inserted sequences and
insertion sites of human samples
In order to determine the repeat content of the inserted sequences,
we used RepeatMasker. In particular, we classified as SINE sequences
that were fully (50 bp tolerance) annotated as SINE by RepeatMasker.
Similarly for LINE. For low complexity, we accepted sequences
fully (50bp tolerance) annotated as low complexity or as simple
repeats. All the insertions that fit in neither categories are classified
as “other”.

In order to classify the insertion sites, we overlapped them with
the RepeatMasker track provided by the UCSC Genome Browser.

Identification of TE insertions in Arabidopsis thaliana
Whole-genome resequencing data of 1047 Arabidopsis thaliana
accessions and paired-end alignments on the reference genome of
Tair10 (Arabidopsis Col-0)were obtained from ref. 32. TheTE library of
Arabidopsis thaliana was downloaded from https://arabidopsis.org/
download_files/Genes/TAIR10_genome_release/, including the LINE,
Copia, Gypsy LTR retrotransposons and eight other DNA transposons
(Helitron, En-Spm, Harbinger, hAT, Mariner, MuDR, Pogo, and Tc1).
After that, sequences of all insertions were mapped to the TE library
using blastn (v.2.6.0) based on the “80-80 rule”51. If both the identity
and coverage of each insertion reached 80%, then the insertion was
defined as a TE insertion. Using this strategy, we extracted TE inser-
tions in the 1047 Arabidopsis thaliana genomes.

GWAS using the Arabidopsis thaliana insertions dataset
Thephenotypes offlowering time under 10 °Cand 16 °Cwereobtained
from The 1001 Genomes Consortium52. Eight flowering related phe-
notypes and thirty-four flowering time phenotypes in simulated sea-
sons were download from the Arapheno database41,45. Insertions with a
minor allele frequency (MAF) >0.01 were used for genome-wide
association study (GWAS). GWAS was performed for the all traits with
GEMMA (v0.98.1)53. The population structure was generated as cov-
ariates using admixture (v1.3.0), as well as an IBS kinship matrix
derived from SNP and small InDels calculated by GEMMA. The cutoff
for determining significant associations was set as -log10(1/n), where n
represents the total number of insertions.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The insertions data generated in this study have been deposited in EBI.
The insertions calls from 3202 samples from the 1000 Genomes Pro-
ject are under project PRJEB59423 [https://www.ebi.ac.uk/ena/
browser/view/PRJEB59423]. The clustered calls are available under
analysis ERZ16007666 [https://www.ebi.ac.uk/ena/browser/view/
ERZ16007666], while the single-sample calls are available under ana-
lysis ERZ16007665 [https://www.ebi.ac.uk/ena/browser/view/
ERZ16007665]. The insertion calls from 1047 Arabidopsis Thaliana
from the 10001 Genomes Project are under project PRJEB58052
[https://www.ebi.ac.uk/ena/browser/view/PRJEB58052]. The clustered
calls are available under analysis ERZ14864777 [https://www.ebi.ac.uk/
ena/browser/view/ERZ14864777], while the single-sample calls are
available under analysis ERZ16031661 [https://www.ebi.ac.uk/ena/
browser/view/ERZ16031661]. Sequencing data for HG002 was down-
loaded from NCBI (accessions SRR1766442 to SRR1766486). PacBio
HiFi data forHG002wasdownloaded fromNCBI under accession code
[PRJNA586863]. The HG002 benchmark catalogue and the list of tier 1
regions were downloaded from https://ftp-trace.ncbi.nlm.nih.gov/
ReferenceSamples/giab/data/AshkenazimTrio/analysis/NIST_SVs_
Integration_v0.6/. Information on accessing the 3202 CRAM files for
the 1KGP project produced by NYGC can be found at https://www.
internationalgenome.org/data-portal/data-collection/30x-grch38. The
Phase 2 benchmark calls produced by HGSVC are available at https://
www.internationalgenome.org/data-portal/data-collection/hgsvc2.
The SV catalogue produced by NYGCwas downloaded from http://ftp.
1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_
coverage/working/20210124.SV_Illumina_Integration/1KGP_3202.
gatksv_svtools_novelins.freeze_V3.wAF.vcf.gz. RepeatMasker annota-
tions for hg19 and hg38 were downloaded from the UCSC Table
Browser. Data from the 1001 Genomes Project was downloaded from
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NCBI under accession code [PRJNA273563]. The TE library of Arabi-
dopsis Thaliana was downloaded from https://arabidopsis.org, under
Download/Genes/TAIR10 genome release/TAIR10 transposable ele-
ments. Phenotypic data was downloaded from the Arapheno database.

Code availability
Source code for INSurVeyor is available for download at https://github.
com/kensung-lab/INSurVeyor.
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