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A B S T R A C T   

The field of cancer genomics and transcriptomics has evolved from targeted profiling to swift sequencing of 
individual tumor genome and transcriptome. The steady growth in genome, epigenome, and transcriptome 
datasets on a genome-wide scale has significantly increased our capability in capturing signatures that represent 
both the intrinsic and extrinsic biological features of tumors. These biological differences can help in precise 
molecular subtyping of cancer, predicting tumor progression, metastatic potential, and resistance to therapeutic 
agents. In this review, we summarized the current development of genomic, methylomic, transcriptomic, pro
teomic and metabolic signatures in the field of cancer research and highlighted their potentials in clinical ap
plications to improve diagnosis, prognosis, and treatment decision in cancer patients.   

1. Introduction 

With the advance in sequencing technologies, whole-genome and 
whole-transcriptome sequencing have now been widely used in cancer 
studies to provide researchers with information of DNA mutation, DNA 
methylation and gene expression at a genome-wide level. Together with 
the advances in mass spectrometry which enabled in depth analysis of 
proteomic and metabolic profiles in cancers, the omics signatures have 
been studied for their use in different clinical applications in cancer 
patients (Fig. 1). It has been shown that by discerning generic patterns in 
genomic data, one can reveal the basic biological properties of a tumor 
such as defects in DNA-repair pathways [1]. For example, consistent 
patterns of DNA mutagenesis across breast tumours can be used to 
identify BRCA1-null and BRCA2-null tumors [2]. In some cases, one can 
even distinguish tumors showing impairment in the BRCA-pathway but 
without having apparent mutations in the BRCA1/2 genes themselves, 
which enables identification of patients who will respond better to PARP 
inhibitors [3]. This lifts off the limitation of our knowledge of biology 
from preventing clinical translation of genomic and transcriptomic re
sults. This is, in part, due to the fact that genome-wide signature analysis 
of DNA mutation, DNA methylation and gene expression can reveal not 
only the effect of tumor cell intrinsic pathways but also the interaction 

between tumor cells and the microenvironment [4–6]. Moreover, 
development of new mathematical and computational tool is essential in 
improving the understanding of the complex genome-wide sequencing 
data and extracting abstract patterns which are associated with specific 
biological and/or clinical features of the tumor [7–9]. 

2. DNA mutational signature in cancer 

Mutations accumulate with age and multiple exposures, engraving 
characteristic mutational patterns or imprints in the genome of somatic 
cells, termed as mutational signatures. Mutational signatures represent 
genome-wide somatic alteration patterns and reflect the activities of 
endogenous and exogenous mutational processes. For example, DNA 
repair deficiencies can leave specific footprints on the cancer genome. 
Therefore, depicting mutational signatures provides a conceptual 
breakthrough to understanding life history and tumor etiology at the 
DNA level and underpins advances in cancer early detection and ther
apeutic implications. 

2.1. Detecting SNV mutational signatures 

Since the initial identification of merely five SNV signatures in a 
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study of 21 breast cancer cases back in 2012 [10], there has been a 
significant expansion in the catalog of SNV signatures (Fig. 2). 
Large-scale genome projects such as the Pan-Cancer Analysis of Whole 
Genomes (PCAWG) Consortium of the International Cancer Genome 
Consortium (ICGC) and The Cancer Genome Atlas (TCGA) have un
covered an increasingly complex molecular landscape of human cancers 
[11,12]. These projects have amalgamated genomic data from an 
impressive collection of over 4000 whole genomes and nearly 20,000 
exomes. This extensive integration has paved the way for the identifi
cation of a multitude of signatures that encompass many cancer types, 
which are now deposited in the Catalogue of Somatic Mutations in 
Cancer (COSMIC) (https://cancer.sanger.ac.uk/cosmic) [2,13–15]. 
Advancing further, the analysis of whole genome sequences has 
remarkably facilitated the identification of novel mutational signatures 
[16]. 

The etiology of certain mutational signatures has been successfully 
validated. Some of these signatures are associated with known exoge
nous mutagens such as ultraviolet radiation and smoking. Other signa
tures are associated with endogenous exposures such as replication 
errors arising from impaired DNA repair processes [17], homologous 
recombination deficiency (HRd) [18], mismatch repair deficiency 
(MMRd) [19] and nucleotide excision repair deficiency (NERd) [20]. 

SNV mutational signatures fall into three categories: single base 
substitution (SBS), double base substitution (DBS), and small insertions 
and deletion (ID). The concept of SBS and DBS were introduced based on 
a distinct type of one or two consecutive nucleotide substitution(s) and 
combination of 5’ and 3’ neighboring bases, resulting in 96/78 possible 
mutation types, respectively. The overall pattern of the 96/78 channels 
of mutation is the mutational signature. The progression of sequencing 
techniques has spurred the creation of computational methods for 
deducing mutational signatures from individual samples [16,21–24]. 

Alexandrov et al. pioneered inference of mutational signatures by 
developing a non-negative matrix factorization (NMF)-based WTSI 
framework [Wellcome Trust Sanger Institute (WTSI) Mutational Signa
ture Framework] for de novo signature extraction [21]. This approach 
allows for the unbiased identification of both predominantly and novel 
signatures and is predominantly used for deriving reference signatures 
from extensive cohorts. The principle involves decomposing a matrix M 
(somatic mutations x samples) into a matrix S (a set of mutational 
signature references) and a matrix A (activity of each signature) to 
determine the signature profiles and contributions of each signature in 
each cancer genome. From then on, a variety of NMF-based tools have 
been developed for identifying mutational signatures, including Maf
tools, MutationalPatterns, MutSpec, SignatureToolsLib, SigMiner, Soma
ticSignatures, and SigProfiler_PCAWG [15,22–27]. For example, 
SigProfiler_PCAWG, an enhanced version of the original WTSI frame
work, was employed to construct the reference signatures deposited in 
the COSMIC database through an unsupervised machine-learning 
approach for de novo extraction of signatures [15]. SigProfilerExtractor, 
a more recent version that implements a PyTorch-based factorization 
method, automatically selects the number of signatures, and de
composes de novo extracted signatures to known COSMIC signatures 
[28]. 

Apart from de novo extraction, re-fitting is another approach that 
allows the assignment of a predefined set of signatures (i.e., COSMIC 
Legacy SBS and COSMIC V3 SBS, DBS and ID) to an individual sample for 
signature identification. Several signature refitting tools have been 
developed, such as deconstructSigs, mutationalPatterns, and SigProfiler
Assignment [23,29,30]. Furthermore, supervised machine learning (ML) 
tools that incorporate known exposures during the training of the al
gorithm have emerged, such as SuperSigs. SuperSigs considers clinical 
factors such as age, smoking status, and body mass index, enhancing its 

Fig. 1. Timeline of milestones of different omics signatures. Fig. 1. The figure shows some of the key milestones for 1. Mutational signatures, 2. Methylation 
signature, 3. Transcriptome signature and 4. Proteomic and metabolic signatures. Abbreviation: SNV, single-nucleotide variant; SV, structural variation; CNV, copy 
number variation; SBS, single base substitution; DBS, double base substitution; ID, insertions and deletion; TMZ, temozolomide; DKFZ, The German Cancer Research 
Center; AML, acute myeloid leukemia; ALL, acute lymphocytic leukemia; NSCLC, non-small cell lung cancer. 
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effectiveness in predicting environmental or lifestyle factors that may 
contribute to cancer. This method has been successful in identifying 
mutation patterns linked to cancer in obese patients [31]. 

While fitting methods offer a more precise estimation of each sig
nature’s relative and absolute contribution to each sample, overfitting is 
a concern that warrants careful consideration. Maura et al. have pro
posed a multi-step guideline for a more accurate mutational signature 
analysis in hematological cancers. This involves initially shortlisting 
COSMIC signatures using de novo extraction methods, followed by 
refitting each individual sample with only the subset of COSMIC sig
natures identified earlier [32]. 

2.2. Detecting SV/CNV mutational signatures 

Structural variations (SVs) are prevalent in cancer, defined by large- 
scale intra-chromosomal events (>50 bp in size) or inter-chromosomal 
events. Classification schemas for SVs have also been actively explored 
to better understand the mutagenic processes of the tumor [32,33]. SV 
signatures were first described in breast cancer, among which three SV 
signatures characterized by tandem duplications or deletions were 
identified to be associated with HRd [14]. Recently, a pan-cancer study 
has investigated SV signatures by integrating both canonical and com
plex SV such as chromothripsis, chromoplexy, multiple inversions and 
templated insertion. Notably, SV signatures consistently correlated with 
the presence of pathogenic germline variants and somatic driver muta
tions in DNA-repair genes, including BRCA1, BRCA2, FANC, CDK12, and 
PALB2 across a wide spectrum of human cancers [33]. Maclachlan et al. 
has used this classification approach to investigate SV signatures in 
multiple myeloma (MM) patients and found SV signatures associated 
with distinct and known MM drivers, which helps understand the 
genomic complexity in MM [34]. Moreover, a recent study has identified 

complex rearrangements by analyzing the topology of junction copy 
numbers of the rearrangement. Clustering of tumors according to the 
complex rearrangements identified subgroups associated with DNA 
repair defects and poor prognosis [35]. The first set of SV signatures was 
recently released in COSMIC v3.4. This set includes 10 types of SVs, 
derived from an analysis of 10,731 whole genomes across 16 different 
tissue types provided by Genomics England. 

Copy number variations, referring to gains and losses of DNA, belong 
to an important class of somatic mutation and emerge because of errors 
in replication, mitotic recombination, and breakage-fusion-bridge cy
cles, which may lead to chromosomal instability [36]. The pattern of 
pan-cancer CNV signatures was first examined by analyzing global 
balanced or unbalanced CNV events such as whole-genome doubling, 
aneuploidy and loss of heterozygosity. As a result, 21 pan-cancer CNV 
signatures associated with different etiologies including chromothripsis, 
LOH, HRd and cancer-driver genes have been identified, among which 
the chromothripsis-related CNV signature is associated with poor 
disease-specific survival in glioblastoma [36]. Macintyre et al. demon
strated that copy number signatures predict overall survival and the 
probability of platinum-resistant relapse in ovarian cancer [37]. Drews 
et al. have developed an analytical framework, through which they 
identified 17 distinct signatures that are associated with specific types of 
chromosomal instability, leading to substantial DNA alteration events 
within the cancer genome [38]. 

The identification of canonical SVs patterns, including tandem du
plications, deletions, inversions, and translocations, served as the 
foundation of SV signatures [14]. The SV signatures proposed by 
Nik-Zainal et al. consist of 32 distinct channels, each differentiated by 
the type, size, and clustering status of the SVs. The consideration of the 
clustering status is beneficial for understanding tumor evolution, as 
clustered events often originate from a single, instantaneous complex 

Fig. 2. Summary of mutational signatures based on SNV, CNV and SV. Fig. 2. The figure depicts features of SNV, SV and CNV mutational signatures. For SNVs, 
the 5’ and 3’ of the mutated site, as well as the type of mutation are considered. For SVs, four types of variants, the distance between the two breakpoints, along with 
the clustered status of the SVs are considered. For CNVs, factors such as heterozygosity, total copy number, and CNV size are taken into consideration. Mutational 
signature fitting is a mathematical procedure used to determine the combination of known signatures, such as the COSMIC catalogue. Abbreviation: SNV, single- 
nucleotide variant; SV, structural variation; CNV, copy number variation; HD, homozygous deletion; LOH, loss of heterozygosity; Het, heterozygous. 

W. Ma et al.                                                                                                                                                                                                                                     



Computational and Structural Biotechnology Journal 23 (2024) 954–971

957

event such as chromothripsis or chromoplexy. Furthermore, a novel 
approach has been introduced for a more thorough assessment of SV 
signatures. This method involves the extraction and integration of pat
terns from both simple and complex rearrangements, such as duplica
tions and triplications that are inserted distantly [33]. 

The framework for inferring CNV signatures in cancers was described 
by Steele et al. [36]. The classification schema incorporates several 
factors, including the number of segments for each allele at each variant 
loci, the heterozygosity states of the copy number segment (determining 
whether they are homozygous deletions, loss of heterozygosity (LOH), 
copy neutral LOH, or high-level amplifications), as well as the size of the 
segments. This classification allows for the summarization of copy 
number profiles using a 48-component vector, which effectively sum
marizes multifarious CNV states, therefore providing a better under
standing of the mutational processes in a tumor. 

The computational inference of SV/CNV mutational signatures in
volves two crucial steps. The first step is to generate mutational matrices 
utilizing genomic data. Following this, the matrices are analyzed to 
extract the mutational signatures. SigProfilerMatrixGenerator is a widely 
used bioinformatics tool that plays an instrumental role in examining 
the patterns of SBS, DBS and ID. It accomplishes this by converting the 
mutational catalogues of a collection of cancer genomes into mutational 
matrices. These matrices are then subjected to matrix decomposition 
[39]. Furthermore, the most recent version of this tool has been 
enhanced to facilitate the examination and matrices generation of larger 
mutational events, including SV and CNV signatures [40]. Several 
NMF-based signature extraction tools have been developed for decom
posing SV and CNV signatures from matrices, such as SigProfilerEx
tractor, pyCancerSig, Viola, and Sigminer [26,28,41,42]. In addition to 
simple SV, clustering-based tools like Starfish have been developed to 
infer signatures of clustered complex genomic rearrangements using 
copy number and breakpoint patterns. Starfish has been applied to infer 
signatures related to biological processes by analyzing over 2000 WGS 
tumors. This led to the identification of three signatures associated with 
micronuclei- and chromatin-bridge-induced chromothripsis, as well as 
circular extrachromosomal DNA [43]. 

2.3. Applications of mutational signatures in molecular classification of 
cancer 

Mutational signature analysis has become an integral part of the 
standard procedures in cancer genome analysis in both research and 
clinical settings. For example, although the detection of mutations in 
cancer predisposition genes has significantly influenced the diagnosis 
and optimized management of cancer patients [44], pathogenic variants 
in these genes are not always detectable as they can be inactivated 
through epigenetic mechanisms [45,46]. Moreover, assessing the path
ogenicity of these germline variants can occasionally be challenging 
[44]. Mutational signatures have emerged as promising molecular 
markers, revealing previously undetected predispositions to cancer. 
Georgeson et al. demonstrated that the concurrent presence of two SBSs 
could differentiate carriers of biallelic MUTYH germline pathogenic 
variant from non-carriers in colorectal cancer (CRC) patients. This 
finding has shown potential for identifying biallelic carriers and classi
fying variants of uncertain significance [47,48]. In addition, the com
bination of two ID signatures was able to distinguish MMR-deficient 
CRCs from MMR-proficient CRCs [47]. Furthermore, Grolleman et al. 
identified a specific signature that could be observed in multiple ma
lignancies carrying biallelic germline NTHL1 mutations, highlighting 
the role of mutational signature analysis in characterizing tumor phe
notypes in rare cancer predisposition syndromes [49]. These findings 
suggest that mutational signatures have the potential to serve as diag
nostic tools and aid in variant classification. 

The entire spectrum of somatic mutation profiles has been leveraged 
to accurately classify tumors with unknown origins and entities. For 
example, Mutation-Attention (MuAt), a novel deep neural network 

model, has demonstrated its ability to accurately predict tumor types. 
This model was trained by extracting informative features from the 
mutation data of tumor genomes from various sources including 
PCAWG, GEL, ICGC, and TCGA [50]. oncoNPC, another AI-based pre
diction tool, utilizes mutational signatures along with other somatic 
alterations and patient clinical information to jointly predict the primary 
origin of cancer accurately. Such predictions could potentially facilitate 
the clinical management of patients [51]. 

2.4. Application of mutational signatures in prognosis of cancer patients 

In cancers characterized by complex genome alterations such as 
prostate cancer, it has been observed that copy number signatures 
exhibit a stronger correlation with clinical outcomes compared to SNV 
signatures [26]. CNV signatures have been utilized to predict prognosis 
in various cancers, such as multiple myeloma [34] and ovarian carci
noma [37]. Moreover, SV signatures are associated with distinct cancer 
subtypes. Adachi et al. have investigated 170 whole genomes of gastric 
cancer (GC) and found that non-random combinations of SV signature 
were associated with distinctive GC subtypes that exhibit specific driver 
events [52]. Yang et al. revealed the somatic SV patterns in 744 whole 
genome sequenced pediatric brain tumors and uncovered their role in 
supporting disease progression via altering cancer driver genes [53]. 
Understanding the mechanisms behind these alterations can not only 
provide unique insights into the etiology of these cancers, but also reveal 
potential biomarkers for patient stratification and prognosis, as well as 
open new therapeutic opportunities. 

2.5. Application of mutational signatures in guiding treatment decision 

Mutational signatures are very useful in providing information for 
the clinical management of cancer patients, particularly those with de
fects in the homologous recombination DNA repair pathway. Deficiency 
in homologous recombination, caused by defects in DNA repair genes, 
can lead to accumulated genomic instability and tumorigenesis [54]. 
Targeting DNA repair proteins such as poly(ADP-ribose) polymerase 
(PARP) in cancer cells that harbor mutations in DNA repair genes can 
result in synthetic lethality, providing a promising strategy for cancer 
therapy [55]. Furthermore, HRd has been shown to be a predictive in
dicator for the response to immune checkpoint inhibitors [56,57]. 
Several commercial tools have been developed to identify HRd. For 
example, the FDA-approved FoundationFocus CDx BRCA HRD, evalu
ates HRd by detecting alterations in BRCA1/2 and LOH. Another HRD 
detector, myChoice HRD from Myriad Genetics, utilizes a combined 
evaluation of large-scale state transition (LST), telomeric allelic imbal
ance (TAI), and LOH across the genome to predict HRd status. Notably, 
mutational signature has been demonstrated to be a robust and inde
pendent marker of HRd [18] and is associated with response to PARP 
inhibitors in breast, ovarian and gastric cancers [58,59]. The identifi
cation of mutational signature is beneficial in guiding the application of 
PARP inhibitors in tumors that do not exhibit discernible BRCA1/2 
mutations. Given the role of mutational signatures in reflecting HRd 
status, various algorithms such as Signature Multivariate Analysis 
(SigMA) and HRDetect have been developed to determine the likelihood 
of HRd. HRDetect, which was developed based on a LASSO logistic 
regression model, provides a comprehensive evaluation of HRD by 
incorporating mutational signatures, HRD score, and deletion of 
microhomology. HRDetect has demonstrated a high predictive value in 
determining the response to platinum chemotherapy and PARP in
hibitors. It has effectively pinpointed cases of breast cancer with HR 
deficiency in a phase II clinical trial [3,60–62]. 

Mismatch repair (MMR) plays a crucial role in maintaining genomic 
stability. A deficiency in MMR can result in a hypermutable state in 
tumors, a condition frequently observed in colorectal, gastric, and 
endometrial cancers [63]. Interestingly, several mutational signatures 
have been associated with MMRd tumors [15]. Moreover, mutational 
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signatures can assist in distinguishing MMRd tumors that exhibit de
ficiencies in different MMR proteins [19]. Notably, patients with tumors 
that display an MMRd signature are potential candidates for clinical 
treatment with immunotherapy such as pembrolizumab (a PD-1 block
ing antibody) [64]. Computational tools like MMRDetect provide a 
means to analyze MMRd in a genome by examining the spectrum of 
mutational signatures. This approach complements the current method 
of directly sequencing causal genes such as MSH2, MSH6, PMS2, and 
MLH1 [65]. 

Genetic alterations are extensively studied for their potential as in
dicators of drug sensitivity. Recent findings suggest that mutational 
signatures provide a more accurate prediction of a cell line’s response to 
drugs, compared to solely examining gene mutations in oncogenic driver 
genes. Levatić et al. have identified several mutational signatures asso
ciated with drug activity across various cancer cell lines. For example, 
several MMRd signatures are associated with sensitivity towards AKT 
serine/threonine kinase inhibitors. Moreover, signatures associated 
with previous chemotherapy exposure tend to correlate with resistance 
to future drug treatments [66]. 

3. DNA methylation signature in cancer 

DNA methylation is the most common modification of the human 
genome which is found primarily at the cytosine of CpG dinucleotides. 
This process is under strict regulation by the methyltransferases 
DNMT3A, DNMT3B, DNMT3L and methylcytosine dioxygenases TET 
[67]. The distribution of methylated CpG along the human genome is 
not uniform. Most of the human genome is CpG-poor and methylated in 
differentiated somatic cells. However, several thousands of short 

interspersed CpG-rich sequences, known as CpG islands, locate within 
gene promoters and are hypomethylated with unique tissue-specific 
patterns. Early functional studies demonstrated that DNA methylation 
induced transcriptional repression [68,69]. In cancer, DNA methylation 
is heavily studied for its roles in regulating gene transcription and 
genome instability [70]. Many studies have demonstrated that cancer 
cells have a significantly different DNA methylation profile compared to 
normal cells. In general, cancer cells display global hypomethylation 
and local hypermethylation especially around tumor suppressor genes 
[71]. Hypomethylation is shown to promote genomic instability, acti
vation of transposable elements as well as aberrant gene expressions 
[70]. Being itself one of the hallmarks of cancer, DNA methylation and 
epigenetic reprogramming have essentially contributed to all other 
cancer hallmarks including resistance to cell death, dysregulation of 
cellular metabolism and escaping from immune destruction [72]. The 
methylation landscape of cancer cells is often tissue- and 
subtype-specific. This specificity is shown to arise potentially from the 
effect of somatic mutations [73,74] and interference from the diverse 
tumor microenvironment such as hypoxia, stomal cells and infiltrating 
immune cells [71,75]. 

3.1. Detecting methylation signature 

In recent years, next-generation sequencing (NGS)-based or array- 
based technologies are the most popular methods to study genome- 
wide DNA methylation (Fig. 3). Whole genome bisulfite sequencing 
enables genome-wide investigation of DNA methylation profiles at a 
single base resolution while high-throughput methylation array allows 
robust DNA methylation analysis in a cost-effective manner [76,77]. 

Fig. 3. Summary of general workflow of constructing the classification model from DNA methylation data. Fig. 3. The figure depicts the basic workflow of 
construction of DNA methylation classifier. Both tumor and cell-free DNA can be used as input. The methylation level of CpGs is measured either using targeted 
methylation microarray or bisulfite sequencing if genome-wide data is needed. CpGs significantly associated with the feature of interest (e.g. tumor subtype) are 
selected using models such as MLR. The clustering result is checked using tools like t-SNE or UMAP. Finally, the selected probes are submitted to supervised classifier- 
building algorithms such as SVM and RF. Abbreviation: MR, multivariate regression; SVM, support vector machine; RF, random forest. 
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Although methylation array can have variable coverage over whole 
genome based on the probe design, it is currently the most frequently 
used technology for DNA methylation studies, especially in clinical 
settings [78,79]. 

After obtaining the DNA methylation profile of a cohort of samples, 
different computational processes can be applied to establish a disease- 
specific episignature. The first step is usually selection of CpG sites that 
are differentially methylated in patients compared to healthy controls. 
The selected sites are then used to train and construct classifier using 
statistical and machine learning methods to distinguish patients from 
controls [80,81]. Methylation CpG site selection is usually achieved by 
statistical methods such as multivariable linear regression modeling and 
sometimes additional checking of potential non-normal distribution of 
methylation signal such as non-parametric Mann-Whitney U test may 
also be needed [82,83]. During this process, hundred-thousands of CpG 
sites across the genome are reduced to few hundreds of significantly 
differentially methylated sites. This avoids overfitting of the classifier 
model and reduces the complexity of the model [80]. CpG sites corre
lating significantly to other CpGs and CpGs with small effect size can be 
removed for further enrichment [84]. According to some studies, 
including estimated blood cell type distribution into the regression 
model helps refining it [85,86]. 

The episignature generated includes assessed and visualized using 
different methods including hierarchical clustering analysis, t-distrib
uted stochastic neighbor embedding (t-SNE) and uniform manifold 
approximation and projection (UMAP) to confirm its efficiency [87,88]. 
The episignature(s) will then be used for construction of classification 
algorithm. Examples of common algorithms are support vector machine 
(SVM), elastic net multinomial logistic regression (ELNET) and random 
forest (RF). Benchmarking studies have been performed to compare 
these algorithms for their performance in cancer DNA methylation data 
and all of the three in general had satisfactory results [8,89]. For 
example, Maros et al. showed that while ELNET performs the best as a 
stand-alone algorithm, SVM and RF can achieve similar results after 
model-updating calibration using ridge-penalized multinomial logistic 
regression [89]. 

3.2. Applications of methylation signatures in molecular classification of 
cancer 

Owing to the tissue- and subtype-specific nature of DNA methylation 
in cancer, much effort has been made to utilize it in molecular classifi
cation and cancer diagnosis. In medulloblastoma, the disease was orig
inally classified into 4 subgroups by its transcriptional profile [90]. 
While group 1 and group 2 were characterized by activation of SHH and 
WNT pathways respectively, groups 3 and 4 were later shown to be 
distinguishable by their methylation signatures [91]. This eventually led 
to the inclusion of group 3 and 4 medulloblastomas in the 2021 WHO 
classification of tumors of the central nervous system (CNS) based solely 
on molecular features [92]. The first few studies used traditional sta
tistical methods for classification such as unsupervised hierarchical 
clustering. Capper et al. extended the application of such 
methylation-based classifier to all subtypes of CNS tumors using a large 
cohort (n = 2801) and the random forest approach as mentioned in 
Section 2.1. The classifier is available at (https://www.molecula 
rneuropathology.org). It was benchmarked with histopathological 
evaluation and high concordance (838/1104, 76%) was observed. Most 
importantly, it helped the diagnosis of CNS tumors in patients with no 
clear histological-definable subgroup and provided a new diagnosis in a 
significant number of cases [81]. This approach is also widely applied on 
many types of cancers including sarcoma, colorectal cancer, and breast 
cancer [93–95]. In some of these classifiers, they also aimed at stratifi
cation of patients based on prognosis, risk of relapse, and treatment 
response [96–98]. 

3.3. Application of methylation signatures in early detection of cancer 

The application of episignature in early non-invasive screening of 
cancer is another active area of research. Some of the earliest studies on 
colorectal cancer discovered that aberrant methylation around onco
genes and tumor suppressors occurs at early stage of carcinogenesis [99, 
100]. Imperiale et al. subsequently validated the methylation bio
markers in a large-scale clinical trial showing promising sensitivity and 
specificity [101]. DNA from colorectal cancer cells can be readily 
examined by using fecal DNA samples. However, in most other cancers, 
only cell-free DNA (cfDNA) from peripheral blood is available. More
over, in some cancers, the specificity requirement of methylation bio
markers is not only limited to distinguishing between early cancer 
patients and healthy individuals. For example, in hepatocellular carci
noma which often originates in patients with chronic cirrhosis, 
methylation biomarkers need to differentiate early HCC patients from 
cirrhotic patients [102]. In recent years, a number of in-vitro diagnostic 
(IVD) tests based on DNA methylation analysis of cfDNA have been 
developed. The majority of them target a cancer-specific panel of on
cogenes and tumor suppressors [103–105]. 

With the help of whole genome methylation sequencing and more 
advanced computational methodologies, recent studies also focused on 
building more comprehensive methylation signatures to develop a pan- 
cancer screening assay [106–109]. GRAIL, a biotechnology company 
focusing on early cancer screening, in collaboration with the Mayo 
Clinic, designed the Circulating Cell-free Genome Atlas (CCGA; 
NCT02889978) study to combine genome-wide cfDNA sequencing with 
machine learning to develop pan-cancer classifiers with high specificity. 
The study aimed at recruiting approximately 10,500 cancer participants 
and 4500 non-cancer controls [110]. Among all the molecular features 
tested, whole-genome methylation outperformed other genetic markers 
such as small somatic variant panels and whole-genome somatic copy 
number alterations [110]. Two ML modules were trained – one to 
determine cancer/non-cancer status and the other to predict tissue of 
origin. The locked classifier currently covers 103,456 distinct genomic 
regions (17.2 Mb) and 1116,720 CpGs features with a specificity of 
99.5% and an overall sensitivity of 51.5% [108]. Recent validation study 
by Nicholson et al. also revealed similar findings and demonstrated that 
the sensitivity correlates positively with tumor stage and varies among 
different cancer types with an overall sensitivity of around 20% in stage I 
patients [111]. 

3.4. Application of methylation signatures in prognosis of cancer patients 

Methylation signature of tumors can be used to reveal the molecular 
heterogeneity of the tumors in terms of their proliferative potential, 
resistance to apoptosis and invasive ability. Therefore, methylation 
signature is demonstrated to serve as a prognostic marker for cancer 
patients. Bladder EpiCheck, a methylation test measuring 15 methyl
ation probes which was originally designed to examine the presence of 
bladder cancer using urine samples, can be used to monitor cancer 
recurrence after surgery [112]. This test, similar to those mentioned in 
the above sections, had a high specificity and negative prediction value, 
which made it a good choice for surveillance to exclude recurrent dis
ease [113]. In a few other tests such as the Colvera assay which was 
developed for monitoring relapse in colorectal cancer patients, only very 
few methylation probes were measured [114,115]. For monitoring 
cancer recurrence, methylation signature can sometimes just serve as an 
indicator of presence of tumor cells based on cancer-specific differen
tially methylated CpGs irrespective of their biological functions. 

Besides monitoring for recurrence, methylation signature has also 
been shown to predict survival of patients. For example, a DNA 
methylation signature consisting of ten differentially expressed genes in 
gastric cancer predicts both overall survival and relapse independent of 
TNM stage [98]. In another study using a cohort of 1538 breast cancer 
patients, Batra et al. developed a semi-supervised computational 
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strategy (Methylayer) which integrates different biological features 
including gene expression, DNA mutational spectrum, and clinical in
formation for computational peeling of confounders to model layered 
tumor methylation signatures. They identified that factors of the tumor 
microenvironment (TME) such as infiltrating immune cells and 
cancer-associated fibroblast strongly interfered with a subgroup of 
methylation sites [116]. Interestingly, they also introduced the idea of 
epigenomic instability which is made up by differentially hyper
methylated and hypomethylated CpGs (which they termed methylation 
gain and methylation loss layers respectively) and showed that they 
predicted overall survival oppositely in ER negative breast cancer pa
tients [117]. On the other hand, they also showed that there existed a 
third group of differentially methylated CpG sites whose level did not 
correlate with tumor stage and found that this third group did not have 
any prognostic value. This study demonstrated that methylation signa
tures can be further refined by including other potential confounders 
like factors of the TME. Similar models for predicting prognosis have 
also been developed for other cancers including hepatic, pancreatic, 
colorectal cancers, and meningiomas [118–121]. Furthermore, 
methylation signatures were able to detect patients with highly meta
static tumors. Wu et al. and Chen et al. constructed methylation models 
to classify patients with potential lymph node metastasis in gastric 
cancer [122,123]. Other studies also revealed different methylation 
signatures associated with distant metastasis in cancers including the 
prostate, colon, and lung [124–127]. 

3.5. Application of methylation signatures in guiding treatment decision 

Given the effect of genome-wide methylation patterns in regulating 
gene expression in cancers, many groups tried to use methylation 
signature in tumor cells to predict drug responses. By just identifying the 
tissue of origin for carcinoma with unknown primary (CUP), it has been 
shown that patients who received tumor type-specific chemotherapy 

had an improved overall survival compared to those receiving empiric 
therapy [128,129]. Furthermore, with the initial success of MGMT 
promoter methylation analysis in guiding temozolomide treatment in 
gliomas [130], methylation signature analysis can now be applied to 
study the effect of any anti-cancer agents in a pan-cancer manner. Iorio 
et al. studied different molecular signatures in 1001 human cancer cell 
lines across 29 tissues and demonstrated that methylation signals in 
combination with genomic data were the best tissue-specific predictor of 
drug responses in 120 of 319 tested anti-cancer agents [131]. Moreover, 
methylation signatures were demonstrated to be effective predictors of 
responses to both chemotherapies and targeted therapies in different 
types of cancers [132–134]. In recent years, as immunotherapies such as 
checkpoint inhibitors were proven to be superior to conventional che
motherapies in many cancers, many studies have also focused on 
investigating if methylation signature can serve as a predictor for im
munotherapies. Duruisseaux et al. developed the EPIMMUNE signature, 
a methylation signature extracted from non-small-cell lung cancer DNA 
samples which can predict response to anti-PD-1 treatment [135]. The 
authors suggested that DNA samples from bulk tumor samples had the 
advantage of being able to reflect intrinsic (cancer cell) and extrinsic 
(microenvironment and infiltrating immune cell) factors of the tumor 
which both govern the resistance to immunotherapy. Subsequent studies 
further extended the use of methylation signatures in predicting 
response to immunotherapy in melanoma [96] and even in a pan-cancer 
manner although with reduced specificity [136]. 

4. Transcriptome signature in cancer 

The transcriptome reflects the physiological state of the cell. 
Transcriptome-wide study of gene expression began in the 2000’s 
starting with studying those of established cell lines and healthy subjects 
[137,138]. Much research on characterizing the transcriptome cancer 
tumors and cell lines emerged at that time [139–141] and in the early 

Fig. 4. Examples of clustering algorithms in analyzing transcriptome signature. Fig. 4. The figure shows examples of unsupervised clustering algorithms used in 
identifying molecular subtypes of cancers using transcriptomic data. Network-based algorithms such as spectral clustering, MCL and Louvain identifies clusters 
without making prior assumptions about the nature of clusters in the data. Traditional ML methods start with selection of subtype associated DEGs using regression 
models, followed by submitting them into ML algorithms like consensus clustering, SVM and RF. Deep learning models gain increased interests in recent years. 
Whole-transcriptome data can be used directly in training models like CNN and GCNN without the need for prior filtering of DEGs. Abbreviation: CNN, convolutional 
neural network; DEG, differentially expressed gene; GCNN, graph convolutional neural networks; LASSO, least absolute shrinkage and selection operator; MCL, 
Markov cluster algorithm; ML, machine learning; MR, multivariate regression; SVM, support vector machine; RF, random forest. 
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2010’s when NGS technologies were adopted, for example, in renal 
adenocarcinoma [142,143], lung cancers [144] and pancreatic cancers 
[145]. These earlier studies focused on discovering alterations of the 
transcriptome of the cancer of a given origin, such as alternative splicing 
events in lung cancer [144], the ALK-PTPN3 gene fusion in non-small 
cell lung cancer (NSCLC) [146] and the RB1-ITM2B fusion in mela
noma [147]. 

4.1. Applications of transcriptome signatures in molecular classification 
of cancer 

Transcriptome has also been widely used for discovering differen
tially expressed genes (DEGs) in cancers. It was initially proposed that 
identification of key sets of DEGs (transcriptome signature) can help in 
diagnosing patients with CUP [148]. The complexity of the structure of 
transcriptome is contributed by the fact that gene expression is often 
regulated by a network of co-related genes which interact and form 
clusters and networks. Different statistical methods were developed to 
assist in computing the clusters of DEGs and identifying the character
istic transcriptome signatures, which include vector algebra-based al
gorithm [149], singular value decomposition [150] and principal 
component analysis [151]. The field then gradually switched to the use 
of machine learning approaches such as SVM and deep neural network 
given their superior performance in decoding the hidden patterns in 
transcriptome (Fig. 4). [152,153]. These new classifiers can in general 
achieve an overall accuracy above 90% and support classification of 
more than 30 types of tumors from different origins [154,155]. 

Transcriptome signatures have also been investigated as a potential 
tool to help in molecularly subtyping within the same type of cancer. 
Guinney et al. applied an unsupervised network-based cluster algorithm 
to identify network substructures which correspond to different molec
ular subtypes of colorectal cancer [156]. They showed that colorectal 
cancer can be molecularly grouped into four consensus subtypes with 
distinct intrinsic and microenvironmental features. In addition, Joanito 
et al. showed that by further isolating the transcriptome signatures of 
the epithelial cells populating the tumor microenvironment using 
single-cell sequencing, they managed to refine the classification of 
colorectal cancer subtypes based on results of bulk tumor transcriptomes 
[157]. Following a similar methodology, consensus molecular subtypes 
were identified in muscle-invasive bladder cancer and non-small-cell 
lung cancer [158,159]. In some studies, this clustering process is iter
ated using resampling-based algorithms like consensus clustering [160] 
which aim at reaching a stable consensus model representing results 
over multiple runs of clustering [161,162]. 

4.2. Application of transcriptome signatures in early detection of cancer 

There is research on circulating tumor RNA in readily accessible 
saliva or epithelial cells for early detection of cancers. The transcriptome 
signature in saliva has been proposed to be utilized in early detection of 
oral squamous cell cancer [163,164], with a clinical trial conducted in 
2015 with a receiver operating characteristic AUC of over 0.85 [165]. 
For lung cancer, Whitney et al. developed a classifier from the tran
scriptome of bronchial epithelial cells in a population of current or 
former smokers using multi-step logistic regression and obtained an AUC 
of 0.80 [166]. Silvestri et al. applied this classifier to a separate cohort 
and obtained AUC of 0.78 [167]. It improved the diagnostic yield over 
bronchoscopy alone while having a negative predictive value of 91%. 
This population contained both early-stage and late-stage primary lung 
cancer, and all stages were detected using the classifier. Recently, 
Mazzone et al. explored the use of nasal epithelial cells for non-invasive 
screening but positive predictive value was modest [168]. 

4.3. Application of transcriptome signatures in prognosis of cancer 
patients 

Machine learning is yielding new transcriptome signatures inde
pendent of existing signatures. In the case of lung adenocarcinoma, Xu 
et al. recently found that the combination of random survival forest 
(RSF) and generalized boosted regression modeling algorithms yielded 
an optimal model of 52 overall-survival-associated genes with mean C- 
index of 0.692 in 11 cohorts [169] that stratifies patients by OS and is 
independent of 108 published signatures and greater precision than 
clinical features such as age and cancer stage. In addition, they found the 
high-risk group was sensitive to alisterib, while the low-risk group was 
sensitive to RITA, which may guide treatment decision. For acute 
myeloid leukemia (AML), discriminative models are needed for 
improving the current European Leukemia Net classification system. 
Selected expression-based models have been assessed by Wang et al. 
[170]. Recently, narrowing down the genes based on the cancer’s 
pathogenesis has proven successful in generating prognostic models. 
Tao et al. developed a prognostic model from 39 genes and 8 lncRNAs 
involved in ferroptosis in pediatric AML [171]. The risk score stratified 
patients with high and low overall survival with an AUC of 0.70 for 
1-year and 5-year survival. In the case of colorectal cancer, Samadi et al. 
found novel prognostic biomarkers from analysis of mRNA, lncRNA and 
miRNA data using Robust Rank Aggregation (RRA) and WGCNA [172]. 
A recent review by Tran et al. includes more examples of ML-derived 
prognostic signatures [173]. 

4.4. Application of transcriptome signatures in guiding treatment decision 

The transcriptomic characteristics of malignancies have proven 
useful for clinical risk stratification and guiding treatment decisions 
especially in leukemia patients [174–176]. A study by Docking et al. 
demonstrated that an expression-based prognostic score can provide 
more accurate risk stratification for AML patients which can help direct 
choice of treatment. Furthermore, they showed that 
transcriptome-based testing can enhance therapy selection by identi
fying a subset of patients with dysregulated integrin signaling [176]. 
Importantly, transcriptomic profiling was demonstrated to be valuable 
in immuno-oncology. RNA-sequencing data contributed to the devel
opment of personalized cancer vaccines by characterizing human 
leukocyte antigen allotype and clonal expanded antitumor T cells [177, 
178]. On the other hand, transcriptome signature of adaptive immunity 
has been demonstrated to be used as predictive markers of response to 
immune checkpoint blockade therapy [179]. 

5. Proteomic and metabolomic signatures in cancer 

Proteomics and metabolomics, as effectors of genomics and tran
scriptomics, have emerged as important fields in cancer mechanistic 
research to identify clinically applicable biomarker signatures. In the 
last decade, advances in mass spectrometry (MS) have enabled precise 
profiling of cancer proteomes and metabolomics at cell, tissue, and 
biofluids. In light of the successes with MS-based technologies in 
signature discovery [180], more readily accessible methods have been 
developed to facilitate the discovery. In recent years, affinity-based high 
throughput proteomic profiling using antibodies or aptamers, which are 
mostly applicable to liquid biopsies, has revolutionized proteomic can
cer research [181]. 

5.1. Applications of proteomic and metabolomic signatures in molecular 
classification of cancer 

Together with the improvements in machine learning algorithms, 
recent studies have demonstrated that proteomic signatures can be used 
for determination of tissue of origin in patients with CUP [182,183]. 
However, it is less well-validated compared to methylation signatures 
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and still requires further studies to increase its sensitivity and specificity. 
Significant efforts have been made to incorporate proteomic signa

ture into other multi-omics data to refine the molecular subtyping of 
cancers. Two international networks, The Clinical Proteomic Tumor 
Analysis Consortium (CPTAC) [184] and The International Cancer 
Proteogenome Consortium (ICPC), have been established to promote 
collaboration between proteomic groups and other genomic groups. Part 
of their work included standardization of bioinformatic analysis pro
tocols of proteomic data [185]. In the early studies, statistical clustering 
methods such as model-based clustering, consensus clustering and 
machine-learning classifiers were applied to discover molecular sub
types based on proteome results alone [186,187]. In subsequent CPTAC 
and ICPC studies, multi-omic clustering using NMF became the most 
popular tool for integrative analysis of proteomic signature together 
with other multi-omic signatures in subtype classification [188–191]. 
While the majority of subtype classifications were concordant between 
integrative proteomic signature and other omics signatures, a subset of 
tumors was reclassified by proteomic signature. Since proteomic 
signature measures the final functional protein quantities after 
post-transcriptional and post-translational regulations, the reclassifica
tion revealed intra-subtype heterogeneity. Moreover, it also provided 
valuable information in identifying new druggable protein targets 
especially with the phosphoproteome data [191,192]. 

Several metabolic alterations occur in cancer cells, serving as a new 
hallmark, in which metabolites serve as substrates for energy generation 
and biomass formation as well as regulators of transcriptomes and 
proteomes that affect the tumor micro and macroenvironment [193]. 
Efforts have also been made to develop cancer subtype classification 
based on metabolomics signatures using various ML methods and stra
tegies. For instance, a study by Gal et al. stratified breast cancer cases 
based on tumor-tissue metabolome profiles and identified three distinct 
subtype clusters using specific metabolite profiles and associated with 
different tumor stages and prognosis survival stages using the k-sparse 
ML method among the five tested [194]. As another example, Machlin 
et al. utilized urine metabolic profiles and developed a prediction model 
for bladder cancer that distinguished the disease from controls and 
further stratified it by grades [195]. They subtracted the potential 
cofounder effects by gender and age, and built the model based on three 
metabolites, having an AUC of 0.956 for bladder cancer risk prediction. 
Tan et al. used a binary logistic regression model with a stepwise opti
mization algorithm to identify the three most effective differential me
tabolites for constructing a diagnostic model for bladder cancer with an 
AUC of 0.961 [196]. Metabolomic biomarker signatures have become 
increasingly important for classifying cancer subtypes and predicting 
clinical outcomes [197–200], with novel methods continually emerging. 

5.2. Application of proteomic and metabolomic signatures in early 
detection of cancer 

The earliest studies in proteomic signature for cancer diagnosis 
gained focus in the early 2000 s when Petricoin et al. and Adam et al. 
developed proteomic classifiers for diagnosis of ovarian cancer and 
prostate cancer respectively [201–204]. They demonstrated pattern 
analysis using machine-learning technique (self-organizing map/ 
Kohonen network) [205] can serve as an alternative method to single 
biomarker discovery in high dimensional proteomic studies [201]. Since 
then different classifier training algorithms have been used for identi
fication of diagnostic protein signatures while no single type of tech
nique consistently outperformed the others. It is common that multiple 
methods were used in a single study and the investigators eventually 
selected the best-performing model [206,207]. 

Recently, large-scale biomedical databases, like UK-biobank and 
FinnGen, provided a wealth of resources for discovery of quantitative 
trait loci across various omics and expression levels, useful in detecting 
risk of disease, such as cancer, at an early stage [208,209]. Analysis of 
large-scale population-based proteome or metabolomic profiles in 

conjunction with genome-wide disease-association data through the 
two-sample Mendelian randomization approach (MR) allows mapping 
of disease-causative protein- or metabolite-QTLs that could be used as 
risk predictors [210]. The MR approach is increasingly being utilized to 
discover biomarkers and QTLs for a wide variety of diseases [211–213], 
including cancers, because it is capable of establishing causal relation
ships between expression profiles and diseases while overcoming the 
limitations of residual confounding and reverse causality. For example, 
Mälarstig et al. first identified 812 cis-pQTLs of 737 proteins for seven 
breast-cancer-related clinical characteristics (e.g. age, alcohol con
sumption and number of births) based on plasma proteomes of 2929 
proteins in 598 women using linear regression model [214]. By applying 
the cis-pQTLs as genetic instrument and the 730 proteins as exposures, 
they performed both Wald-ratio and Inverse-variance weighted (IVW) 
MR analyses on breast cancer disease-association datasets from three 
independent sources and identified five proteins that are etiologically 
relevant for breast cancer development. In another example, Sun et al. 
used a similar approach to identify 13 circulating proteins for CRC risks 
based on GWAS meta-analysis datasets from literatures and from 
UK-biobank and FinGen [215]. They also examined the pleiotropy of the 
protein effects on CRC risk using MR-Egger regression method [216] 
which was one of the methods developed to deal with the contamination 
of invalid instrumental variables [217–219]. Similarly, Feng et al. car
ried out a two-sample MR analysis based on serum metabolomic profiles 
and GWAS data of multiple cancers and identified key biomarkers for 
each cancer [220]. The cancer-relevant QTLs and plasma biomarkers 
provide a powerful tool for identifying individuals at high risk at an 
early stage of cancer. 

5.3. Application of proteome and metabolomic signatures in prognosis of 
cancer patients 

In addition to discovering novel molecular subtypes of cancers, the 
works of CPTAC and ICPC also focused on investigating whether pro
teomic signature may offer extra prognostic value to existing multi-omic 
signatures. For example, Krug et al. found that the integrative proteomic 
signature identified a subgroup of PAM50 luminal A breast cancer pa
tients to be luminal B-like (which they donated as NMF LumB-I) which 
was associated with poor overall survival than NMF LumA-I [190]. It 
should be noted that integrative analysis of proteomic signature may not 
always produce similar results as stand-alone analysis of proteomic data. 
This can be particularly highlighted by the study by Asleh et al. in which 
they further subclassified the triple-negative breast cancer (TNBC) pa
tients into 4 biological subgroups with differential recurrence-free sur
vival solely by consensus clustering using proteomic data [221]. This 
heterogeneity in TNBC was not revealed by the NMF analysis used by 
Krug et al. Similarly in lung adenocarcinoma, Soltis et al. developed a 
proteomic signature to predict overall survival and metastasis-free sur
vival which differs from the result of somatic genome signature sub
typing [222]. 

Longitudinal metabolomics serves as a potential approach to identify 
signatures for monitoring cancer progression, relapse and remission 
using regression models and ML models [223,224]. Among them are 
TCA cycle intermediates and RNA degradation products for CRC [225], 
and carnitine and acetylcarnitine for multiple myeloma [226]. Since the 
patients are likely receiving therapy during monitoring, understanding 
the therapeutic drug metabolism is important to distinguish between 
treatment-induced metabolic changes and cancer-relapse-induced 
metabolic changes. 

5.4. Application of proteomic and metabolomic signatures in guiding 
treatment decision 

Proteome and phosphoproteome signatures are capable of directly 
measuring the degree of activation of target oncogenic pathways, 
making them sensitive predictors of response to targeted therapies 
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[227–230]. Since liquid biopsies, such as blood and urine, can be 
accessed with minimal invasiveness, they are ideal sampling types for 
monitoring disease progression monitoring and managing treatment. At 
present, the most widely validated serum proteomic signature predictor 
is the VeriStrat test for predicting the benefit of EGFR inhibitor erlotinib 
treatment for NSCLC patients [231–233]. It was first developed based on 
serum proteome profiles using a straightforward k-nearest neighbor 
(KNN) algorithm [231]. Later, it was demonstrated to be significantly 
associated with proinflammatory NSCLC [234]. Chae et al. and Rich 
et al. therefore proposed that VeriStrat could be a potential signature 
marker for predicting the response to immunotherapy in NSCLC patients 
[235,236] and demonstrated it to be an independent survival predictor 
in addition to PD-L1 tumor expression, suggesting proteomic signature 
could be a superior predictor than standard biomarkers for immuno
therapies [236]. The VeriStrat for NSCLC subtype classification and 
treatment decision suggestion demonstrated the power of proteome 
signature analysis in predicting treatment responses. Recently more 
proteomic signatures specific to predict response to immunotherapy 
were developed in different cancers [237,238]. 

Spatial omics analysis enriches our understanding of the intra- 
tumoral heterogeneity and its interactions with the adjacent stromal 
tissues, which can be beneficial for therapeutic decisions. A recent study 
by Wang et al. detected differential spatial metabolomic signatures in 

lung squamous cell carcinoma between the stroma tissues and tumor 
tissues and found that the stromal metabolomic profiles associated with 
chemotherapy response, providing insight for immunotherapies [239]. 

6. Overview of each signature and future directions in 
multiomics 

Previous studies have focused on driver mutations in the coding re
gion that alter protein function and drive tumor cell survival and 
growth. A subset of these driver mutations has been successfully tar
geted therapeutically. For instance, gefitinib, erlotinib, and afatinib 
have been used to treat lung cancer patients carrying EGFR mutations, 
and larotrectinib and entrectinib have been approved for the treatment 
of solid tumors carrying NTRK fusions. Considering that driver muta
tions are not always found in every cancer genome and the majority of 
cancer variants are passenger mutations located in non-coding regions, 
the emergence and evolution of mutational signatures have bridged the 
gap in understanding the whole genome and pinpointing therapeutic 
targets. Mutational signatures have demonstrated significant potential 
in clinical settings, both in terms of tumor classification and as prog
nostic indicators. Signatures associated with known etiologies, such as 
HRD and defective MMR, have shown significant potential in clinical 
applications, offering opportunities for the use of PARP inhibitors and 

Table 1 
Examples of classification methods and their performance in different omic signatures.  

Classifier method Type of signature Clinical application Performance Reference 

Logistic regression Methylation signature Early detection AUC = 91%, sensitivity = 98%, specificity > 99% for 
ovarian cancer[106]; 
Sensitivity = 44.2%, specificity = 99.8% for stage I–III 
cancers[107] 

[106,107] 

Methylation signature Predict treatment response Overall survival HR = 0.080, p = 0.0012 [135] 
Transcriptome signature Determination of tissue of 

origin 
Accuracy = 0.911, sensitivity = 0.800 [155] 

Transcriptome signature Early detection, subtyping AUC = 0.78, sensitivity = 0.93, specificity = 0.57[166]; 
Accuracy = 0.92[261] 

[166,261] 

Transcriptome signature Prognosis Overall survival HR = 4.11, p < 0.001 [262] 
Metabolic signature Early detection AUC = 0.838, sensitivity = 0.807, specificity = 0.818 [263] 

Graph-based clustering Methylation signature Subtype classification 5 subgroups identified [264]  
Transcriptome signature Subtype classification 2 subgroups identified[157]; 

6 subgroups identified[158] 
[157,158] 

Kernel logistic regression Methylation signature Early detection Sensitivity = 0.34, specificity = 0.98 [110] 
LASSO Methylation signature Predict treatment response Risk groups stratification, Kaplan–Meier plot p = 0.0034 [134] 

Transcriptome signature Predict treatment response Risk groups stratification, HR = 5.46, p = 4.57e− 13 [176] 
Proteomic signature Prognosis Risk group stratification C-index = 0.885, p < 0.0001; AUC 

= 0.95 
[265] 

Support vector machine Methylation signature Predict treatment response F1 score = 0.4255, AUC = 0.6742 [136] 
Transcriptome signature Subtype classification Accuracy = 0.78 [152] 
Proteomic signature Response to 

Immunotherapy 
AUC = 0.77 [237] 

Random forest Methylation signature Subtype classification 91 subgroups identified, estimated error rate = 4.28%[81]; 
65 subgroups identified, estimated error rate = 0.65%[93] 

[81,93] 

Transcriptome signature Subtype classification Accuracy = 0.854, sensitivity = 0.859, specificity = 0.94 [156] 
Transcriptome signature Prognosis C-index = 0.692 [169] 

NMF clustering SNV, CNV and SV mutational 
signature 

Extracting de novo 
signatures 

NA [27,28,33, 
36] 

Proteomic signature Subtyping 3 subgroups identified[189]; 
4 subgroups identified[191] 

[189,191] 

Unsupervised k-means 
clustering 

Methylation signature Prognosis Overall survival HR = 1.92, p = 0.01 [102] 
Transcriptome signature Subtype classification 4 subgroups identified [161] 
Proteomic signature Prognosis Overall survival, cluster 2 HR = 2.68, p = 0.001 [221] 

Agglomerative hierarchical 
clustering 

Methylation signature Prognosis Risk group stratification OR = 15.45, p ≤ 0.05 [121] 
Transcriptome signature Subtype classification 8 subgroups identified [162] 
Metabolic signature Predict treatment response Overall survival, S2 subtype HR = 4.187, p = 0.002 [239] 

Neural network-based 
clustering 

CNV and SV mutational 
signature 

Extracting de novo 
signatures 

6 complex genomic rearrangement signatures identified [43] 

Mutational signature Predict treatment response AUC = 0.98 [266] 
Transcriptome signature Subtype classification Accuracy > 80% in breast cancer cohort [94] 
Transcriptome signature Diagnosis Accuracy = 97%, mean F1 score = 0.92 [267] 
Transcriptome signature Subtype classification Sensitivity = 0.9733, specificity = 0.9737, F1 score 

= 0.9733[153]; 
Accuracy = 0.766, AUC = 0.852[259] 

[153,259] 

Proteomic signature Early detection Sensitivity = 1.00, specificity = 0.95 [204]  
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immunotherapies. These provide a strong justification for considering 
mutational signatures alongside driver mutations when interpreting 
cancer genomes. Although the emergence of large amounts of genome- 
wide sequencing data has enabled the discovery of common signatures 
shared by different types of cancer as well as cancer-type specific 
mutational signatures, the etiology of many of these signatures remains 
elusive, future works that utilize cell lines and model organisms, are 
crucial for validating the functional outcomes and facilitating the 
interpretation of these mutational signatures. 

Given the importance of DNA methylation in early detection, the 
prediction of cancer progression and metastasis, clinical outcomes, and 
response to therapy, it plays a vital role in guiding cancer clinical 
management. A variety of methods have been developed to provide a 
comprehensive view of the DNA methylation landscape. These include 
genome-wide bisulfite sequencing, methylated DNA immunoprecipita
tion (MeDIP), and Illumina 450 K arrays, which measure the methyl
ation state of well-characterized CG sites distributed across the genome. 
DNA methylation signatures have been shown to be effective diagnostic 
and prognostic markers (Table 1). For example, machine learning-based 
approaches have enabled the classification of central nervous system 
tumors and the differentiation of primary lung squamous cell carci
nomas from head and neck metastases, thereby informing therapeutic 
decisions [240]. Moreover, DNA methylation patterns derived from 
FFPE from glioblastoma patients can be used to predict patient survival 
[241]. Besides DNA methylation signatures, we have summarized the 
application of transcriptome signatures in diagnosis, prognosis, and 
guiding treatment decision for cancer patients. However, transcriptome 
signatures from heterogeneous tissue are known for their limitation in 
accurately reflecting the cell type-specific characteristics of tumor tis
sue. Moreover, only a limited number of methylation and transcriptome 
tests have received FDA approval for clinical use. The critical challenges 
include overcoming cell-type heterogeneity, developing reliable and 
standardized methods for selecting methylation/transcriptome features 
to predict clinical outcomes and therapeutic responses, and assessing the 
clinical utility and reliability of the identified signatures. 

DNA mutational signatures, methylation signatures, and tran
scriptome signatures provide useful information from different per
spectives. Multi-omics that integrate data across multiple layers have the 
potential to further enhance the performance of existing models. For 
example, transcriptome sequencing by RNA-seq allows for the detection 
of altered expression, splicing and gene fusion events. The incorporation 
of RNA-seq with genetic testing (target panels, WES or WGS) has been 
shown to enhance the detection, classification, and validation of disease- 
causing variants, and provide treatment alternatives in cancer patients 
[242–246]. In addition, the concurrent profiling of the DNA methylome 
with the whole genome and transcriptome has been shown to substan
tially improve the detection efficacy of clinically actionable variants in 
pediatric cancer patients [247]. The multi-omics profiling encompasses 
transcriptome and DNA methylome, showing superior predictive per
formance in classifying cancer subtypes among breast cancer, glioblas
toma, and ovarian cancer, compared to using single omics data [248]. 
Furthermore, multi-omics profiling that includes multiple layers of data, 
such as WGS, RNA-seq, Hi-C and ATAC-seq has been shown to identify 
changes in the three-dimensional organization of the genome, chromo
some accessibility, and gene expression. This comprehensive approach 
provides valuable insights into the regulatory mechanisms of aberrant 
gene expression and disease progression [249,250]. 

The field of multi-omics has experienced significant advancements, 
particularly in the transition from bulk analysis to single-cell analysis. 
Signature detection based on bulk sequencing largely depends on the 
cellular composition of the sample and represents an average molecular 
signal. To tackle the challenges of tumor heterogeneity, single-cell 
techniques have emerged, facilitating personalized treatment based on 
the specific heterogeneity of the tumor. Single-cell RNA-seq has proven 
successful in dissecting tumor heterogeneity and microenvironment 
with unparalleled resolution in both solid tumors and hematological 

malignancies such as leukemia and lymphoma [251]. For example, 
scRNA-seq has been utilized to identify drug-tolerant cell populations in 
NSCLC tumors, as well as quiescent stem-like cells that contribute to 
chemoresistance and poor outcomes in AML. These findings have pro
vided targets for eliminating these cell populations to overcome therapy 
resistance [252,253]. Furthermore, it is currently under active investi
gation in clinical trials in hematology and oncology, with the goal of 
discovering biomarkers, enhancing diagnostics, and refining disease 
subclassification to improve patient care [254]. On the other hand, 
single-cell DNA sequencing (scDNA-seq) has demonstrated significant 
potential in early diagnosis and disease monitoring. This is exemplified 
by its ability to detect measurable residual disease with a high sensitivity 
of approximately 0.01%. Moreover, it simultaneously provides 
clone-specific immunophenotypic data in cases of acute leukemia [255, 
256]. The integration of single cell RNA/DNA-seq with other single-cell 
assays such as scTCR/BCR-seq, scATAC-seq and scHi-C, allows for the 
simultaneous study of not only the genotypic and phenotypic charac
teristics of individual cells, but also the underlying regulatory mecha
nisms in cancer. 

Multi-omics analysis of cancer tissues provides valuable insights into 
mechanistic understanding of cancer, however such invasive samples 
are less suited for regular disease monitoring. Cancer-specific changes in 
cellular metabolism and proteome, which manifest in the form of 
secreted signatures and present in the circulating blood, offer an ideal 
and less invasive means for clinically monitoring the disease progression 
[223]. An important consideration during data interpretation is the 
metabolic and proteomic profiles of cellular uptake and excretion from 
all bodily processes, not only from the cancerous process. Longitudinal 
monitoring would provide dynamic omics changes in trends and greatly 
enhance prognostic monitoring. While the sequencing technologies for 
genome and transcriptome enable nearly complete coverage, proteome 
and metabolome profiling technologies are rapidly advancing with 
increasing coverage of thousands of proteins and hundreds of metabo
lites, although they remain far from comprehensive. Due to technical 
limitations, affinity-based proteome profiling datasets can only be used 
to compare one protein across samples, not between proteins among 
different samples, which limits the value of the data. Currently, the 
metabolomic profiling is conducted solely using MS, which provides 
very sensitive, accurate, and reproducible data, however, is not readily 
available to most studies and restricts its utility. Proteomic and metab
olomic profiling require both technological and analytical advance
ments to maximize their clinical applications. 

Multi-omics profiling offers significant potential to revolutionize 
clinical practice. Considering that processing and interpreting complex 
omics data presents a major challenge, robust computational strategies, 
such as machine learning algorithms, are evolving rapidly [257,258]. 
Deep learning, a prominent category of ML algorithms that has gained 
considerable attention in recent years, mirrors the neurological frame
work of the brain. By learning from multi-layered neural network ar
chitectures, it is capable of identifying complex patterns and making 
predictions. These models extract high-level features from input data by 
processing them across various modalities. Consequently, the integra
tion of clinical data, histopathological images, and different types of 
omics data - including genomic, transcriptomic, and methylome profiles 
- during training can significantly enhance the predictive power of these 
models. 

A wide range of deep learning algorithms have been developed to 
aim at improving patient diagnosis, prognosis, and treatment manage
ment. For example, Islam et al. developed a multimodal framework that 
improved the prediction of breast cancer subtypes by employing two 
convolutional neural networks (CNNs) models trained with CNV and 
transcriptome data respectively [259]. Similarly, Foersch et al. devel
oped a deep learning tool for characterizing anti-tumor immunity that 
outperformed other clinical, molecular, and immune cell-based param
eters in predicting prognosis and therapy response in colorectal cancer 
patients [260]. Despite facing challenges such as difficulties in training 
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and interpreting the trained model, researchers are actively working on 
developing more efficient training methods and explainable algorithms. 
These efforts aim to overcome these challenges and enhance the future 
applicability of deep learning in clinical cancer applications. 

7. Conclusion and directions for future research 

In this minireview, we have summarized the development of omics 
signatures as well as their current and potential clinical applications in 
cancer (Table 2). The pivotal role of these signatures in disease pro
gression and their value as diagnostic and prognostic markers have been 
emphasized. The availability of a large amount of genome-wide 
sequencing data has provided opportunities for understanding the link 
between phenotypes and their molecular underpinnings, thereby aiding 
the clinical decision-making process. These findings should be inte
grated with clinical data to enhance our understanding of the etiology 
and disease association of these signatures. The challenge lies in 
analyzing and interpreting the data, identifying useful signatures within 
the vast amount of data, and converting these into actionable informa
tion for clinical application. Moreover, clinical validation of the devel
oped omics signature classifiers remains essential for the translation 
from bench-side to bedside. This can be particularly highlighted by the 
success of the DKFZ/Heidelberg CNS tumor classifier which now is 
incorporated into the WHO 2021 CNS tumor classification guideline 
[81,92]. Similar efforts have been made such as the setup of the Circu
lating Cell-free Genome Atlas study for proving the clinical value of 
methylation signature in cancer diagnosis [108,110]. Future efforts 
should focus on the development of computational tools and algorithms 
to accurately summarize and infer clinically relevant signatures. Moving 
forward, the adoption of multi-omics data in the precision medicine 
framework is the trend. Integration of the large amounts of multi-omic 
and clinical data would provide new insights and potentially revolu
tionize the landscape of clinical management, including early detection 
and classification of diseases, as well as development of personalized 
therapies. More efforts will be dedicated to achieving more compre
hensive analysis, interpretation, and visualization of multi-omics data. 
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[214] Mälarstig A, Grassmann F, Dahl L, Dimitriou M, McLeod D, Gabrielson M, et al. 
Evaluation of circulating plasma proteins in breast cancer using Mendelian 
randomisation. Nat Commun 2023;14:7680. https://doi.org/10.1038/s41467- 
023-43485-8. 

[215] Sun J, Zhao J, Jiang F, Wang L, Xiao Q, Han F, et al. Identification of novel 
protein biomarkers and drug targets for colorectal cancer by integrating human 
plasma proteome with genome. Genome Med 2023;15:75. https://doi.org/ 
10.1186/s13073-023-01229-9. 

[216] Bowden J, Smith GD, Burgess S. Mendelian randomization with invalid 
instruments: effect estimation and bias detection through Egger regression. Int J 
Epidemiol 2015;44:512–25. https://doi.org/10.1093/ije/dyv080. 

[217] Bowden J, Smith GD, Haycock PC, Burgess S. Consistent Estimation in Mendelian 
Randomization with Some Invalid Instruments Using a Weighted Median 
Estimator. Genet Epidemiol 2016;40:304–14. https://doi.org/10.1002/ 
gepi.21965. 

[218] Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal 
pleiotropy in causal relationships inferred from Mendelian randomization 
between complex traits and diseases. Nat Genet 2018;50:693–8. https://doi.org/ 
10.1038/s41588-018-0099-7. 

[219] Burgess S, Foley CN, Allara E, Staley JR, Howson JMM. A robust and efficient 
method for Mendelian randomization with hundreds of genetic variants. Nat 
Commun 2020;11:376. https://doi.org/10.1038/s41467-019-14156-4. 

[220] Feng Y, Wang R, Li C, Cai X, Huo Z, Liu Z, et al. Causal effects of genetically 
determined metabolites on cancers included lung, breast, ovarian cancer, and 
glioma: a Mendelian randomization study. Transl Lung Cancer Res 2022;11: 
1302–14. https://doi.org/10.21037/tlcr-22-34. 

[221] Asleh K, Negri GL, Miko SES, Colborne S, Hughes CS, Wang XQ, et al. Proteomic 
analysis of archival breast cancer clinical specimens identifies biological subtypes 
with distinct survival outcomes. Nat Commun 2022;13:896. https://doi.org/ 
10.1038/s41467-022-28524-0. 

[222] Soltis AR, Bateman NW, Liu J, Nguyen T, Franks TJ, Zhang X, et al. 
Proteogenomic analysis of lung adenocarcinoma reveals tumor heterogeneity, 
survival determinants, and therapeutically relevant pathways. Cell Rep Med 
2022;3:100819. https://doi.org/10.1016/j.xcrm.2022.100819. 

[223] Armitage EG, Southam AD. Monitoring cancer prognosis, diagnosis and treatment 
efficacy using metabolomics and lipidomics. Metabolomics 2016;12:146. https:// 
doi.org/10.1007/s11306-016-1093-7. 

[224] Wang W, Rong Z, Wang G, Hou Y, Yang F, Qiu M. Cancer metabolites: promising 
biomarkers for cancer liquid biopsy. Biomark Res 2023;11:66. https://doi.org/ 
10.1186/s40364-023-00507-3. 

[225] Zhu J, Djukovic D, Deng L, Gu H, Himmati F, Zaid MA, et al. Targeted serum 
metabolite profiling and sequential metabolite ratio analysis for colorectal cancer 
progression monitoring. Anal Bioanal Chem 2015;407:7857–63. https://doi.org/ 
10.1007/s00216-015-8984-8. 

[226] Lodi A, Tiziani S, Khanim FL, Günther UL, Viant MR, Morgan GJ, et al. Proton 
NMR-Based Metabolite Analyses of Archived Serial Paired Serum and Urine 
Samples from Myeloma Patients at Different Stages of Disease Activity Identifies 
Acetylcarnitine as a Novel Marker of Active Disease. PLoS ONE 2013;8:e56422. 
https://doi.org/10.1371/journal.pone.0056422. 

[227] Xing X, Hu E, Ouyang J, Zhong X, Wang F, Liu K, et al. Integrated omics landscape 
of hepatocellular carcinoma suggests proteomic subtypes for precision therapy. 
Cell Rep Med 2023;4:101315. https://doi.org/10.1016/j.xcrm.2023.101315. 

[228] Kim H, Yu SJ, Yeo I, Cho YY, Lee DH, Cho Y, et al. Prediction of Response to 
Sorafenib in Hepatocellular Carcinoma: A Putative Marker Panel by Multiple 
Reaction Monitoring-Mass Spectrometry (MRM-MS)*. Mol Cell Prote 2017;16: 
1312–23. https://doi.org/10.1074/mcp.m116.066704. 

[229] Li Y, Xu C, Wang B, Xu F, Ma F, Qu Y, et al. Proteomic characterization of gastric 
cancer response to chemotherapy and targeted therapy reveals potential 
therapeutic strategies. Nat Commun 2022;13:5723. https://doi.org/10.1038/ 
s41467-022-33282-0. 

[230] Cordo’ V, Meijer MT, Hagelaar R, Haas RR de G, Poort VM, Henneman AA, et al. 
Phosphoproteomic profiling of T cell acute lymphoblastic leukemia reveals 
targetable kinases and combination treatment strategies. Nat Commun 2022;13: 
1048. https://doi.org/10.1038/s41467-022-28682-1. 

[231] Taguchi F, Solomon B, Gregorc V, Roder H, Gray R, Kasahara K, et al. Mass 
Spectrometry to Classify Non–Small-Cell Lung Cancer Patients for Clinical 
Outcome After Treatment With Epidermal Growth Factor Receptor Tyrosine 
Kinase Inhibitors: A Multicohort Cross-Institutional Study. JNCI: J Natl Cancer 
Inst 2007;99:838–46. https://doi.org/10.1093/jnci/djk195. 

[232] Carbone DP, Ding K, Roder H, Grigorieva J, Roder J, Tsao M-S, et al. Prognostic 
and Predictive Role of the VeriStrat Plasma Test in Patients with Advanced 
Non–Small-Cell Lung Cancer Treated with Erlotinib or Placebo in the NCIC 
Clinical Trials Group BR.21 Trial. J Thorac Oncol 2012;7:1653–60. https://doi. 
org/10.1097/jto.0b013e31826c1155. 

[233] Gregorc V, Novello S, Lazzari C, Barni S, Aieta M, Mencoboni M, et al. Predictive 
value of a proteomic signature in patients with non-small-cell lung cancer treated 
with second-line erlotinib or chemotherapy (PROSE): a biomarker-stratified, 
randomised phase 3 trial. Lancet Oncol 2014;15:713–21. https://doi.org/ 
10.1016/s1470-2045(14)70162-7. 

[234] Fidler MJ, Fhied CL, Roder J, Basu S, Sayidine S, Fughhi I, et al. The serum-based 
VeriStrat® test is associated with proinflammatory reactants and clinical outcome 
in non-small cell lung cancer patients. BMC Cancer 2018;18:310. https://doi.org/ 
10.1186/s12885-018-4193-0. 

[235] Chae YK, Kim WB, Davis AA, Park LC, Anker JF, Simon NI, et al. Mass 
spectrometry-based serum proteomic signature as a potential biomarker for 
survival in patients with non-small cell lung cancer receiving immunotherapy. 
Transl Lung Cancer Res 2020;9:1015–28. https://doi.org/10.21037/tlcr-20-148. 

[236] Rich P, Mitchell RB, Schaefer E, Walker PR, Dubay JW, Boyd J, et al. Real-world 
performance of blood-based proteomic profiling in first-line immunotherapy 
treatment in advanced stage non-small cell lung cancer. J Immunother Cancer 
2021;9:e002989. https://doi.org/10.1136/jitc-2021-002989. 

[237] Harel M, Ortenberg R, Varanasi SK, Mangalhara KC, Mardamshina M, 
Markovits E, et al. Proteomics of Melanoma Response to Immunotherapy Reveals 
Mitochondrial Dependence. e18 Cell 2019;179:236–50. https://doi.org/10.1016/ 
j.cell.2019.08.012. 

[238] Muller M, Hummelink K, Hurkmans DP, Niemeijer A-LN, Monkhorst K, Roder J, 
et al. A Serum Protein Classifier Identifying Patients with Advanced Non–Small 
Cell Lung Cancer Who Derive Clinical Benefit from Treatment with Immune 
Checkpoint Inhibitors. Clin Cancer Res 2020;26:5188–97. https://doi.org/ 
10.1158/1078-0432.ccr-20-0538. 

[239] Wang J, Sun N, Kunzke T, Shen J, Zens P, Prade VM, et al. Spatial metabolomics 
identifies distinct tumor-specific and stroma-specific subtypes in patients with 
lung squamous cell carcinoma. Npj Precis Oncol 2023;7:114. https://doi.org/ 
10.1038/s41698-023-00434-4. 

[240] Jurmeister P, Bockmayr M, Seegerer P, Bockmayr T, Treue D, Montavon G, et al. 
Machine learning analysis of DNA methylation profiles distinguishes primary lung 
squamous cell carcinomas from head and neck metastases. Sci Transl Med 2019; 
11. https://doi.org/10.1126/scitranslmed.aaw8513. 

[241] Klughammer J, Kiesel B, Roetzer T, Fortelny N, Nemc A, Nenning K-H, et al. The 
DNA methylation landscape of glioblastoma disease progression shows extensive 
heterogeneity in time and space. Nat Med 2018;24:1611–24. https://doi.org/ 
10.1038/s41591-018-0156-x. 

[242] Rusch M, Nakitandwe J, Shurtleff S, Newman S, Zhang Z, Edmonson MN, et al. 
Clinical cancer genomic profiling by three-platform sequencing of whole genome, 
whole exome and transcriptome. Nat Commun 2018;9:3962. https://doi.org/ 
10.1038/s41467-018-06485-7. 

[243] Leongamornlert D, Gutiérrez-Abril J, Lee SW, Barretta E, Creasey T, Gundem G, 
et al. Diagnostic utility of whole genome sequencing in adults with B-other acute 
lymphoblastic leukemia. Blood Adv 2023;7:3862–73. https://doi.org/10.1182/ 
bloodadvances.2022008992. 

[244] Belzen IAEM van, Cai C, Tuil M, van, Badloe S, Strengman E, Janse A, et al. 
Systematic discovery of gene fusions in pediatric cancer by integrating RNA-seq 

W. Ma et al.                                                                                                                                                                                                                                     

https://doi.org/10.1016/j.cca.2021.03.012
https://doi.org/10.1097/mco.0000000000000430
https://doi.org/10.1097/mco.0000000000000430
https://doi.org/10.1038/nrc1043
https://doi.org/10.1038/nrc1043
http://refhub.elsevier.com/S2001-0370(24)00024-2/sbref201
http://refhub.elsevier.com/S2001-0370(24)00024-2/sbref201
http://refhub.elsevier.com/S2001-0370(24)00024-2/sbref201
http://refhub.elsevier.com/S2001-0370(24)00024-2/sbref201
https://doi.org/10.1093/jnci/94.20.1576
https://doi.org/10.1016/s0140-6736(02)07746-2
https://doi.org/10.1109/5.58325
https://doi.org/10.1109/5.58325
https://doi.org/10.1245/s10434-007-9354-3
https://doi.org/10.1101/2023.07.18.549557
https://doi.org/10.1038/s41586-018-0579-z
https://doi.org/10.1038/s41586-022-05473-8
https://doi.org/10.1038/s43586-021-00092-5
https://doi.org/10.1038/s43586-021-00092-5
https://doi.org/10.1038/s41467-018-05512-x
https://doi.org/10.1038/s41467-018-05512-x
https://doi.org/10.1038/s41467-021-27164-0
https://doi.org/10.1038/s41467-021-27164-0
https://doi.org/10.1038/s41586-023-06563-x
https://doi.org/10.1038/s41586-023-06563-x
https://doi.org/10.1038/s41467-023-43485-8
https://doi.org/10.1038/s41467-023-43485-8
https://doi.org/10.1186/s13073-023-01229-9
https://doi.org/10.1186/s13073-023-01229-9
https://doi.org/10.1093/ije/dyv080
https://doi.org/10.1002/gepi.21965
https://doi.org/10.1002/gepi.21965
https://doi.org/10.1038/s41588-018-0099-7
https://doi.org/10.1038/s41588-018-0099-7
https://doi.org/10.1038/s41467-019-14156-4
https://doi.org/10.21037/tlcr-22-34
https://doi.org/10.1038/s41467-022-28524-0
https://doi.org/10.1038/s41467-022-28524-0
https://doi.org/10.1016/j.xcrm.2022.100819
https://doi.org/10.1007/s11306-016-1093-7
https://doi.org/10.1007/s11306-016-1093-7
https://doi.org/10.1186/s40364-023-00507-3
https://doi.org/10.1186/s40364-023-00507-3
https://doi.org/10.1007/s00216-015-8984-8
https://doi.org/10.1007/s00216-015-8984-8
https://doi.org/10.1371/journal.pone.0056422
https://doi.org/10.1016/j.xcrm.2023.101315
https://doi.org/10.1074/mcp.m116.066704
https://doi.org/10.1038/s41467-022-33282-0
https://doi.org/10.1038/s41467-022-33282-0
https://doi.org/10.1038/s41467-022-28682-1
https://doi.org/10.1093/jnci/djk195
https://doi.org/10.1097/jto.0b013e31826c1155
https://doi.org/10.1097/jto.0b013e31826c1155
https://doi.org/10.1016/s1470-2045(14)70162-7
https://doi.org/10.1016/s1470-2045(14)70162-7
https://doi.org/10.1186/s12885-018-4193-0
https://doi.org/10.1186/s12885-018-4193-0
https://doi.org/10.21037/tlcr-20-148
https://doi.org/10.1136/jitc-2021-002989
https://doi.org/10.1016/j.cell.2019.08.012
https://doi.org/10.1016/j.cell.2019.08.012
https://doi.org/10.1158/1078-0432.ccr-20-0538
https://doi.org/10.1158/1078-0432.ccr-20-0538
https://doi.org/10.1038/s41698-023-00434-4
https://doi.org/10.1038/s41698-023-00434-4
https://doi.org/10.1126/scitranslmed.aaw8513
https://doi.org/10.1038/s41591-018-0156-x
https://doi.org/10.1038/s41591-018-0156-x
https://doi.org/10.1038/s41467-018-06485-7
https://doi.org/10.1038/s41467-018-06485-7
https://doi.org/10.1182/bloodadvances.2022008992
https://doi.org/10.1182/bloodadvances.2022008992


Computational and Structural Biotechnology Journal 23 (2024) 954–971

971

and WGS. BMC Cancer 2023;23:618. https://doi.org/10.1186/s12885-023- 
11054-3. 

[245] Shukla N, Levine MF, Gundem G, Domenico D, Spitzer B, Bouvier N, et al. 
Feasibility of whole genome and transcriptome profiling in pediatric and young 
adult cancers. Nat Commun 2022;13:2485. https://doi.org/10.1038/s41467-022- 
30233-7. 

[246] Pleasance E, Bohm A, Williamson LM, Nelson JMT, Shen Y, Bonakdar M, et al. 
Whole-genome and transcriptome analysis enhances precision cancer treatment 
options. Ann Oncol 2022;33:939–49. https://doi.org/10.1016/j. 
annonc.2022.05.522. 

[247] Wong M, Mayoh C, Lau LMS, Khuong-Quang D-A, Pinese M, Kumar A, et al. 
Whole genome, transcriptome and methylome profiling enhances actionable 
target discovery in high-risk pediatric cancer. Nat Med 2020;26:1742–53. https:// 
doi.org/10.1038/s41591-020-1072-4. 

[248] Xu J, Wu P, Chen Y, Meng Q, Dawood H, Dawood H. A hierarchical integration 
deep flexible neural forest framework for cancer subtype classification by 
integrating multi-omics data. BMC Bioinform 2019;20:527. https://doi.org/ 
10.1186/s12859-019-3116-7. 

[249] Ren B, Yang J, Wang C, Yang G, Wang H, Chen Y, et al. High-resolution Hi-C maps 
highlight multiscale 3D epigenome reprogramming during pancreatic cancer 
metastasis. J Hematol Oncol 2021;14:120. https://doi.org/10.1186/s13045-021- 
01131-0. 

[250] Sanghi A, Gruber JJ, Metwally A, Jiang L, Reynolds W, Sunwoo J, et al. 
Chromatin accessibility associates with protein-RNA correlation in human cancer. 
Nat Commun 2021;12:5732. https://doi.org/10.1038/s41467-021-25872-1. 

[251] Huang D, Ma N, Li X, Gou Y, Duan Y, Liu B, et al. Advances in single-cell RNA 
sequencing and its applications in cancer research. J Hematol Oncol 2023;16:98. 
https://doi.org/10.1186/s13045-023-01494-6. 

[252] Aissa AF, Islam ABMMK, Ariss MM, Go CC, Rader AE, Conrardy RD, et al. Single- 
cell transcriptional changes associated with drug tolerance and response to 
combination therapies in cancer. Nat Commun 2021;12:1628. https://doi.org/ 
10.1038/s41467-021-21884-z. 

[253] Li K, Du Y, Cai Y, Liu W, Lv Y, Huang B, et al. Single-cell analysis reveals the 
chemotherapy-induced cellular reprogramming and novel therapeutic targets in 
relapsed/refractory acute myeloid leukemia. Leukemia 2023;37:308–25. https:// 
doi.org/10.1038/s41375-022-01789-6. 

[254] Lim J, Chin V, Fairfax K, Moutinho C, Suan D, Ji H, et al. Transitioning single-cell 
genomics into the clinic. Nat Rev Genet 2023;24:573–84. https://doi.org/ 
10.1038/s41576-023-00613-w. 

[255] Shouval R, Shlush LI, Yehudai-Resheff S, Ali S, Pery N, Shapiro E, et al. Single cell 
analysis exposes intratumor heterogeneity and suggests that FLT3-ITD is a late 
event in leukemogenesis. Exp Hematol 2014;42:457–63. https://doi.org/ 
10.1016/j.exphem.2014.01.010. 

[256] Robinson TM, Bowman RL, Persaud S, Liu Y, Neigenfind R, Gao Q, et al. Single- 
cell genotypic and phenotypic analysis of measurable residual disease in acute 
myeloid leukemia. Sci Adv 2023;9:eadg0488. https://doi.org/10.1126/sciadv. 
adg0488. 

[257] Picard M, Scott-Boyer M-P, Bodein A, Périn O, Droit A. Integration strategies of 
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